
UNIVERSITY OF LJUBLJANA

FACULTY OF MATHEMATICS AND PHYSICS

DEPARTMENT OF MATHEMATICS

Mathematics � 3rd cycle

Niels Voorneveld

EQUALITY BETWEEN PROGRAMS
WITH EFFECTS

Doctoral dissertation

Adviser: prof. dr. Alex Simpson

Ljubljana, 2019

UNIVERZA V LJUBLJANI

FAKULTETA ZA MATEMATIKO IN FIZIKO

ODDELEK ZA MATEMATIKO

Matematika � 3. stopnja

Niels Voorneveld

ENAKOST MED PROGRAMI
Z U�INKI

Doktorska disertacija

Mentor: prof. dr. Alex Simpson

Ljubljana, 2019

Acknowledgements
I am very grateful to my supervisor, Alex Simpson, whose guidance was of paramount
importance to my research, and who helped me in all of my academic writings. I would
like to thank the other members of my thesis committee, Ugo Dal Lago and Marko
Petkov²ek, for their evaluation of my thesis. Thanks to Philipp Haselwarter and Brett
Chenoweth who, as my o�cemates, I could always bother with an odd question or two.
Thanks to Andrej Bauer, Matija Pretnar and �iga Luk²i£, for further helpful discussions
and guidance, and especially Anja Petkovi¢ for helping me with Slovene translations.
Thanks to the academic visitors to Ljubljana throughout the years, including Francesco
Gavazzo, Aliaume Lopez, and my master's supervisor Jaap van Oosten, whose insights
helped me a lot. Last but not least, I would like to thank my parents, Ellen and Frits
Voorneveld, for all their support, and the rest of my family whose constant stream of
photos never failed to lift my mood. Of course, thanks to all whom I failed to mention,
and to the rest of humanity for contributing to this marvellous world.

This dissertation is based upon work supported by the Air Force O�ce of Scienti�c
Research under award numbers FA9550-14-1-0096 and FA9550-17-1-0326. This project
has received funding from the European Union's Horizon 2020 research and innovation
programme under the Marie Skªodowska-Curie grant agreement No 731143.

v

Abstract

This thesis studies notions of program equivalence for a call-by-push-value functional
language with algebraic e�ects and general recursion. We mainly focus on behavioural
equivalence, where program behaviour is speci�ed by a collection of e�ect-speci�c for-
mulas. Two programs of the same type are deemed equivalent if they satisfy the same
formulas. To interpret e�ectful behaviour in a generic way, computation terms are eval-
uated to trees built from e�ect operators. These trees are then interpreted in a logic
using modalities, which lift predicates on value types to predicates on computation
types.

One of the main contributions of this thesis is identifying conditions on the modali-
ties under which the behavioural equivalence induced by the logic is a congruence. This
means equivalent terms cannot be distinguished by programs. To prove this property,
we show that the behavioural equivalence coincides with an appropriate notion of ap-
plicative bisimilarity, where e�ects are interpreted using relators (which lift relations).
This allows us to prove the aforementioned congruence using a variation of Howe's
method.

The algebraic e�ects to which the results apply include error, nondeterminism, prob-
ability, global store, input/output, and timer. Several combinations of these e�ects can
also be described with the logic. However, in order to combine e�ects more easily, and
to give more natural descriptions of program behaviour, the logic is generalised to a
logic with quantitative formulas. Once again, the congruence property and connections
with applicative bisimilarity are established.

Finally, we show that similar results hold also if the language is extended with
additional type constructors. In particular, we consider universal polymorphic and
recursive types.

Math. Subj. Class. (2010): 68Q55, 03B70, 06B35, 68Q10, 68Q85
Keywords: Program equivalence, functional programming, call-by-push-value, be-

havioural logic, modalities, algebraic e�ects, applicative bisimilarity, Howe's method,
complete lattices

vi

Izvle£ek

Disertacija preu£uje pojem enakovrednosti programov za funkcijski programski jezik z
algebrajskimi u£inki in splo²no rekurzijo, ki uporablja klic po naloºeni vrednosti (call-by-
push-value oz. na kratko cbpv). Osredoto£amo se predvsem na vedenjsko ekvivalenco,
pri £emer je obna²anje programa dolo£eno z zbirko formul, ki so odvisne od u£inkov. Dva
programa istega tipa imamo za enakovredna, £e zado²£ata istim formulam. Za splo²no
interpretacijo obna²anja programa z u£inki izra£une ovrednotimo z drevesi, zgrajenimi
iz u£inkovnih operacij. Ta drevesa potem interpretiramo v logiki z modalnostmi, kar
dvigne predikate na tipih vrednosti do predikatov na tipih izra£unov.

Eden glavnih prispevkov disertacije je dolo£itev pogojev na modalnostih, pri katerih
je vedenjska ekvivalenca, ki jo inducira logika, kongruenca. To pomeni, da enakovrednih
izrazov ni mogo£e razlikovati s programi. Za dokaz te lastnosti pokaºemo, da vedenjska
ekvivalenca sovpada z ustreznim pojmom aplikativne bipodobnosti, kjer u£inke inter-
pretiramo z uporabo relatorjev (ki dvigajo relacije). To nam omogo£i, da dokaºemo
omenjeno kongruenco s pomo£jo razli£ice Howejeve metode.

Algebrajski u£inki, za katere veljajo rezultati, vklju£ujejo napake, nedeterminizem,
verjetnost, globalni pomnilnik, vhod/izhod in £asomer. Z logiko lahko opi²emo tudi
razli£ne kombinacije teh u£inkov. Da bi laºje kombinirali u£inke in naravneje opisovali
obna²anje programov, posplo²imo logiko na kvantitativno logiko. Tudi tu pokaºemo
lastnost kongruence in povezavo z aplikativno bipodobnostjo.

Na koncu pokaºemo, da podobni rezultati veljajo tudi, £e jezik raz²irimo z dodatnimi
konstruktorji tipov. Posebej preu£imo univerzalne polimorfne in rekurzivne tipe.

Math. Subj. Class. (2010): 68Q55, 03B70, 06B35, 68Q10, 68Q85
Klju£ne besede: Enakovrednost programov, funkcijsko programiranje, klic po na-

loºeni vrednosti (call-by-push-value), vedenjska logika, modalnosti, algebrajski u£inki,
aplikativna bipodobnost, Howejeva metoda, polne mreºe

vii

Contents

1 Introduction 1

1.1 Foreword . 1

1.2 Technical introduction . 2

1.3 Contributions . 4

1.4 Published papers . 7

2 Language and operational semantics 9

2.1 E�ect-free core language . 9

2.2 Adding algebraic e�ects . 15

2.3 Examples of e�ects . 21

3 Behavioural equivalence 27

3.1 Design criteria . 27

3.2 Modalities for e�ects . 29

3.3 Behavioural preorders . 37

3.4 Properties of the preorders . 50

3.5 Equational theories . 54

4 Applicative bisimilarity 67

4.1 Relators . 67

4.2 Applicative simulations . 72

4.3 Relator properties . 76

4.4 Howe's method . 79

4.5 Compatibility results . 88

5 Logic variations 91

5.1 Eliminating computation formula connectives 91

5.2 In�nitary vs �nitary value formula connectives 93

5.3 Combining e�ects . 104

5.4 Pure logic . 113

5.5 Logical statements . 119

5.6 Proof rules . 121

viii

6 Quantitative logic 127

6.1 Quantitative predicates . 127

6.2 Examples . 130

6.3 Behavioural preorders . 138

6.4 Applicative Q-simulations . 148

6.5 Variations . 154

7 Polymorphic and recursive types 161

7.1 Adding type constructors . 161

7.2 Universal polymorphic types . 163

7.3 Recursive types . 169

7.4 Thoughts on language extensions . 174

8 Conclusions 175

Bibliography 181

Raz²irjeni povzetek v slovenskem jeziku 186

ix

1

Introduction

1.1 Foreword

Not everything is as you imagine it to be. Human creations, conjured in the con�nes
of the brain, may behave di�erently when brought into existence. Nowhere has this
become as apparent as in the �eld of computer science. Coders meticulously craft tools
to aid their fellow human beings. But once downloaded on the users phone, all manner
of di�erent things may alter the apps behaviour. Can the downloaded app on the users
phone still be considered the same as the original code on the designer's laptop?

This depends on a variety of circumstances. What phone is the user using? What
operating system? Is it connected to the internet? Was it dropped on the �oor recently?
The real world has many ways to e�ect the behaviour of computer programs. When
you type in a calculator `2+2=' it will say `4', unless the calculator ran out of batteries,
or a dog mistook it for a biscuit. A calculator fresh from the box is surely di�erent from
a calculator which has been chewed in half.

Once you are aware of such e�ects the world can have on a program, there is a choice
to be made. Do you avoid the e�ects as much as you can, or do you harness them for
your own gain? Whatever decision you make, real world e�ects are a fact of life. So in
order to verify the behaviour of, and equality between, programs with e�ects, one needs
to understand how e�ects in�uence program behaviour.

This understanding needs to be built on a suitable level of abstraction. Fundamen-
tally, we can consider a program to be a `function', something that takes an input and
computes from it an output. E�ects may then be considered as any real world in�uence
which will make the program behave `non-functionally'. This can be anything; some-
thing that stops the program from outputting a result, a potential random in�uence
which makes the program output di�erent results at di�erent runs, or some interaction
with an outside memory source like the internet.

In order to understand the behaviour of the program, one could measure under what
circumstances and how often the program outputs a result with certain properties.
Such measurements can be conceptualised with the notion of observation, which are
formalised using modalities. In case of some random interference, such a modality
might be constructed to measure the frequency at which certain things are outputted

1

2 CHAPTER 1. INTRODUCTION

by the program.
We consider two di�erent programs to be equal if there is no measurement, e.g., a

modality, which can distinguish the two. These measurements are abstractly de�ned,
and as such need to be reasonably formulated to express actual things which the users
of the program can observe. An important property the resulting notion of equality
needs to satisfy, is that no other program can distinguish between two equal programs.
Establishing this for di�erent e�ects and languages is a main contribution of this thesis.

1.2 Technical introduction

The title of this dissertation, �Equality between Programs with E�ects�, is quite general.
Therefore, as an introduction to the material presented in this thesis, we give an outline
of what exactly is meant by the three concepts mentioned in it.

Equality: There are many di�erent notions of equality between programs in computer
science. Such equalities are normally called equivalences, where the word `equality' is
often-times reserved for syntactic equality : two programs are equal if their codes are
exactly the same. There are however multiple ways to code the same `function', ab-
stracting away things like execution time. No one notion of equality could be considered
the `be-all and end-all', which is why we will talk about `a' notion of equivalence, instead
of `the' notion of equality.

Firstly, we consider the notion of denotational equivalence, transporting a program
from its real world implementation to an abstract space of mathematical denotations.
These are mathematical models describing a program as the user might imagine it, a
black box, a function, an abstract representation of the program. If the representations
of two programs are equal, we consider the two programs denotationally equivalent.
Programs which receive inputs and return outputs can for instance be interpreted as
continuous mathematical functions, which is done in domain theory [93, 98]. Alter-
natively, one can consider as denotation functions that are realized by codes, as in
realizability [48, 104], or consider strategies of a game as denotation, as done in game
semantics [4, 32].

Another notion of equivalence is bisimilarity [27, 61, 71]. Two programs are related
if there is a simulation relating the two. Such a simulation needs to satisfy some local
properties of behaviour, doing similar modi�cations on a pair of programs related by the
simulation must result in a new pair related by the simulation. Bisimilarity itself is then
de�ned coinductively, as the largest symmetric simulation satisfying the appropriate
properties. A particular version of bisimilarity of interest in this thesis is applicative
bisimilarity [2], where the main modi�cation tested by simulations are applications to
arguments, whilst abstracting away evaluation time of programs.

Thirdly, there is the notion of contextual equivalence [61, 62, 64]. When a program
outputs basic data, like natural numbers, it is easy to see when two such programs
are equal; which is if they output the same thing. We can de�ne observations for such
programs, e.g., the program outputs the number 3. Programs of more complicated types

1.2. TECHNICAL INTRODUCTION 3

can be tested at such basic data types, by plugging them into a context, a program of a
basic type with a hole. Two programs are contextually equivalent if within each context
they satisfy the same observations. This is the largest `reasonable' notion of equivalence,
since it is the largest relation which is both preserved under program composition, and
satis�es basic observations. It is also the most mysterious notion of equivalence, since
its formulation does not give a clear description of the equivalence at higher types.

The main focus of this thesis however, will be the fourth and �nal notion, logical
equivalence. This notion has primarily been developed in concurrency theory [27]. Using
the notion of observation at basic types used for contextual equivalence as a foundation,
we de�ne observations for any type of programs. These describe behavioural properties
of programs, and are de�ned as formulas in a behavioural logic. Two programs of the
same type are equivalent if they satisfy the same formulas of that type. Unlike contexts
with observations, these formulas give more intuitive tests on programs, like applying a
program to some argument, akin to what is done in applicative bisimilarity.

E�ects: The matter of de�ning equivalences becomes more complicated once e�ects
are involved. If the behaviour of a program is altered by an outside in�uence, such
that it for instance might output di�erent things on di�erent evaluations, observations
used for e�ect-free programs become insu�cient for interpreting program behaviour.
Observations and denotational models of programs need to be adapted to account for
the way the program can be a�ected by the real world.

A program can for instance be a�ected by some random process, introducing prob-

ability, in which case the likelihood that a certain result is produced becomes relevant.
A program might interact with some outside memory source, a global store, in which
case what is stored there becomes important, both before and after the program is
evaluated. Maybe the program communicates to the human user, with input-output, in
which case any possible line of communication with the user must be taken into account.
It can also be that whatever the program interacts with is completely unpredictable,
nondeterministic, so one can only check what is and is not possible.

The equivalence needs to be modelled to suit the situation. In denotational models,
we can for instance change what we consider as outputs the program can produce. In
case of nondeterminism [79, 97] for instance, sets of results are considered, whereas for
probability [36] it is distributions over results. A general way to describe e�ects in such
a denotational way is with the use of monads [63, 106]. E�orts have also been exerted to
adapt the notion of applicative bisimilarity to di�erent e�ects [12, 16, 41], with recently
an important formulation for generic e�ects using monads and relators [14].

In the case of contextual equivalence, we can alter the notion of observations on
basic types, inspired by the denotational models described above. For instance, in [35]
observations are de�ned on the type of natural numbers, and using the method of top-
top closure [35, 75] properties are established for the resulting contextual equivalence.
Inspired by such e�ectful observations, we de�ne the notion of modality for lifting pred-
icates and de�ning behavioural properties for higher types. These modalities are the
foundation for the formulation of logical equivalence used in this thesis.

4 CHAPTER 1. INTRODUCTION

Programs: To study the notions of equivalence in su�cient detail, we need to choose
a speci�c programming language. This language is chosen to feature a wide range
of program behaviour, but is otherwise kept as simple as possible in order to focus
on the interesting details. Fundamental to this language is the inclusion of higher-
order programs, allowing us to construct programs which use other programs as input.
Moreover, we like the language to be Turing-complete, which can be accomplished by
including general recursion. This allows us to code up any function which is computable
in a mathematical sense.

We could consider Plotkin's PCF [80], a functional programming language based on
Scott's logic for computable functions [25, 94]. The behaviour of such a programming
language based on lambda-calculus is heavily dependent on the strategy used to evaluate
terms. When applying a function term to an argument, which can be a program, this
argument can either �rst be evaluated or directly be substituted in the function term.
The choice of such evaluation strategies, respectively called call-by-value (CBV) and
call-by-name (CBN), becomes vital once either divergence or e�ects are present in the
language. In order to study both aspects of e�ect behaviour, we use Levy's call-by-
push-value (CBPV) [42, 43] with general recursion as our vehicle of study.

We add algebraic e�ects [82, 84] to the language, representing e�ects concretely
as algebraic operators. For instance, pr(M,N) is a program which either continues
evaluation with M or N , with equal probability. So we see pr(−,−) as a probabilistic
algebraic operators on programs of the language. In order to keep our treatment of
e�ects as generic as possible, the behaviour of e�ects will however not be directly im-
plemented in the formulation of program evaluation, the operational semantics of the
language. The behaviour will instead be speci�ed in the logic, using the aforementioned
modalities.

Call-by-push-value with general recursion and algebraic e�ects will form the concrete
basis of our studies. We will however consider extensions of this language separately.
Such staples of functional languages like universal type polymorphism and type recur-
sion will also be studied. With such extensions, we hope the language is general enough
to cover a wide range of (real-world) variations of programming languages.

1.3 Contributions

Behavioural equivalence: In this thesis, we study the notion of logical equivalence,
where two programs are equated when they satisfy the same formulas. Programs can be
seen as models which may or may not satisfy predicates describing patterns of program
behaviour. We will focus in particular on classifying the correct formulas, such that
they can be used to formulate behavioural properties from the literature, and such that
the resulting logical equivalence between programs has the right properties. We call
such a logical equivalence induced by formulas describing behavioural properties, the
behavioural equivalence.

Fundamental to the set-up is how we treat e�ects. When a program is evaluated, if an
e�ect is encountered, the e�ect operator is marked down and all possible continuations

1.3. CONTRIBUTIONS 5

are taken into consideration. As such, we see a program of a producer type, containing
computations which can produce a result, as constructing what is called an e�ect tree,
whose leaves are given by values the program can produce, and whose nodes are given
by e�ect operators. We then use modalities to lift formulas on return values to formulas
on programs of the producer type. The interpretation of e�ects is completely speci�ed
by such modalities, and other formula constructors are there to capture other aspects
of call-by-push-value programs.

A main result of this thesis is given in Theorem 3.3.8 (The Compatibility Theorem),
which states: given that the set of modalities satis�es certain properties, the resulting
logical equivalence is preserved under program composition. This partially motivates
the relevance of the logical equivalence, and shows it is a good notion of program
equivalence. Contributions of this thesis include the identi�cation of those su�cient
properties on modalities, dealing with continuity and sequencing, together with the
proof of the theorem itself. It is particularly interesting that numerous examples of
algebraic e�ects can be described by suitable unary modalities, where by `suitable' we
mean they satisfy the properties required by the theorem.

Some combinations of e�ects however, like nondeterminism with probability or
global store, cannot be described by such modalities. This can be proven by study-
ing which equational theories can be described by suitable modalities. To remedy this
problem, we generalise the logical equivalence to use quantitative formulas. These ex-
press behavioural properties which can be satis�ed to a certain quantitative degree. In
some ways, they more naturally describe properties of e�ectful programs. For instance,
they can describe the probability that a program terminates or the set of suitable start-
ing states required for termination. Modalities for such a quantitative logic are then
quantitative themselves, and the theorem from before can be generalised appropriately
to Theorem 6.3.15 (The Generalised Compatibility Theorem).

Relationships between equivalences: Though we focus on one notion of program
equivalence, its relationship to other notions of equivalence is important. For instance, if
we use modalities to specify observations for contextual equivalence, Theorems 3.3.8 and
6.3.15 (The Compatibility Theorems) imply that the logical equivalence is included in
the corresponding contextual equivalence. We could also potentially relate the logical
equivalence with denotational equivalence, by noting that the modalities de�ned on
e�ect trees (the free monad) in a sense capture the behavioural aspects of the more
general monads used in some denotational models. But this is not done in this thesis.

The most important relationship established in the thesis is the relationship between
logical equivalence and applicative bisimilarity. Using the modalities, a relator can be
de�ned in the sense of [14]. This allows us to de�ne a notion of applicative bisimi-
larity for the call-by-push-value language with e�ects, which coincides with the logical
equivalence. Establishing this connection between two prominent notions of program
equivalence (Theorem 4.2.8, The Coincidence Theorem) is one of the main contributions
of this thesis. Moreover, this connection allows us to prove the Compatibility Theorems
using a variation on Howe's method [31, 44], as done in [14].

6 CHAPTER 1. INTRODUCTION

Other contributions of this thesis involve variations on the logical equivalence. First
and foremost, we can choose to include or exclude negation in our logic. This may
change the resulting logical equivalence, in particular when it is used to describe non-
deterministic e�ects. The logical equivalence in the absence of negation coincides with
a notion of mutual applicative similarity. Other variations on the logic can be carried
out without changing the resulting logical equivalence. This includes a `pure' variation,
where the formulas do not reference program terms directly. Other variations entail
reducing the class of formulas without changing the equivalence. In particular, by de-
fault we close the formulas under countable conjunction and disjunction, which can be
changed to �nitary (or binary) conjunction and disjunction for most examples of e�ects.

2

↙↙

↘↘

3

↓↓ ↘↘
4

↘↘

5

↘↘

6.1− 6.3

↙↙ ↓↓
6.4

↓↓

6.5

7

Figure 1.1: Chapter dependencies

Overview: In Chapter 2 we set up the base language of study, a call-by-push-value
lambda calculus with general recursion and algebraic e�ects. We also de�ne its opera-
tional semantics, including the use of e�ect trees constructed with the algebraic e�ect
operators.

In Chapter 3 we de�ne the formulas used to describe behavioural properties of the
language, and in particular the modalities used to describe each e�ect. We formulate
Theorem 3.3.8 (The Compatibility Theorem), and de�ne the properties on modalities
used in the theorem. The chapter ends with a study of equational theories resulting
from such modalities.

Chapter 4 establishes the aforementioned connection with applicative bisimilarity
via the Coincidence Theorems 4.2.7 and 4.2.8, together with an explicit proof of the
Compatibility Theorem 3.3.8, using Howe's method.

Chapter 5 is used to explore the variations on the logic discussed before, together
with which combinations of e�ects are possible in a Boolean logic with unary modalities.

In Chapter 6 we generalise the logic from Chapter 3 to a quantitative logic, capable
of describing more examples of (combinations of) e�ects. It also generalises other parts
of the thesis. In particular, Sections 6.4 and 6.5 partially generalise Chapters 4 and 5
respectively.

1.4. PUBLISHED PAPERS 7

Last but not least, Chapter 7 extends the language and logic to include universal
polymorphic and recursive types, and Chapter 8 concludes the thesis with some related
work and potential topics for future research.

A lot of the material covered in this thesis has been featured in previous publications.
The conference paper [95] and its journal version [96], co-written with Alex Simpson,
contains most material from Chapters 3 and 4, though there the underlying language
is a more modest �ne-grained call-by-value lambda calculus (with algebraic e�ects and
general recursion). The paper [105] describes most of Chapter 6, and uses the same
underlying CBPV language as de�ned in Chapter 2 of this thesis. Material in this
dissertation which has not yet been published before includes: Section 3.5, most of
Chapter 5, Section 6.5 and Chapter 7, together with minor extra results spread out
throughout the thesis.

1.4 Published papers

Below is a list of the author's publications, on the basis of which this thesis has been
prepared:

[96] Alex Simpson and Niels Voorneveld. 2019. Behavioural Equivalence via Modali-
ties for Algebraic E�ects. ACM Trans. Program. Lang. Syst. 42, 1, Article 4
(2020), 45 pages.
https://doi.org/10.1145/3363518

[105] Niels Voorneveld. Quantitative logics for equivalence of e�ectful programs. In

Proc. of MFPS XXXV (Thirty-Fifth Conference on the Mathematical Founda-

tions of Programming Semantics), ENTCS. Elsevier, 2019. To appear.

[104] Niels Voorneveld. Non-deterministic E�ects in a Realizability Model. Electronic
Notes in Theoretical Computer Science. 336 : 299 - 314, 2018. (MFPS XXXIII).
https://doi.org/10.1016/j.entcs.2018.03.029.

[95] Alex Simpson and Niels Voorneveld. Behavioural equivalence via modalities for
algebraic e�ects. In Programming Languages and Systems (ESOP 2018), pages
300-326, 2018.
https://link.springer.com/book/10.1007%2F978-3-319-89884-1

https://doi.org/10.1145/3363518
https://doi.org/10.1016/j.entcs.2018.03.029
https://link.springer.com/book/10.1007%2F978-3-319-89884-1

2

Language and operational semantics

In this chapter we give the core functional language considered in this thesis. We
look at a general language, incorporating di�erent evaluation strategies and a variety
of di�erent data types. To keep the technical details clear and concise, we focus on a
simply typed language for now. But later on in Chapter 7 we will go beyond simple
types, and consider possible parametric language extensions.

Two of the main features of the language are algebraic e�ects and general recursion.
In the presence of these features, as discussed in the introduction, the particular way of
resolving function application becomes fundamental for our interpretation of program
behaviour. This amounts to the following question:

When we apply a functional lambda term to an argument, do we evaluate that argu-

ment before we substitute it? Or do we substitute the argument as is?

The two options correspond to two di�erent reduction strategies, speci�cally call-
by-value (CBV) and call-by-name (CBN) [47, 78, 80] respectively. This choice becomes
important when, for instance, the argument diverges or invokes other e�ects.

Take for instance the following example. Let write(n;M) be a computation which
prints the numeral n on the screen, after which it continues with the evaluation of the
computation M . We look at the following computation:

(λx.write(0;x)) write(1; return(∗))

Under the CBN reduction strategy, `0 1' is printed on the screen, whereas with CBV
`1 0' is printed. We desire a language which accommodates both these attitudes towards
e�ects.

In order to incorporate both behaviours, we choose to use Paul Levy's call-by-
push-value language as in [42, 43]. This language combines CBV and CBN terms by
translating them into di�erent call-by-push-value terms of di�erent types.

2.1 E�ect-free core language

We give an overview of the language and its semantics. The types are divided into two
categories, value types and computation types. Value types contain value terms that are

9

10 CHAPTER 2. LANGUAGE AND OPERATIONAL SEMANTICS

passive; they will not compute anything on their own and can be substituted into other
terms. Computation types contain computation terms which are active, which means
they either start evaluating or wait for an input.

Value types consist of:

A,B ::= UC | 1 | N | Σi∈I Ai | A×B

where I is any �nite indexing set1 as in [43]. In [42], in�nitary indexing sets are used.
UC is a thunk type, which consists of computation terms which are `frozen'. These

terms were initially computation terms but are made inactive by wrapping them into
a thunk. 1 is the unit type, only containing one value ∗. This type forms a foundation
for testing behavioural properties. N is the type of natural numbers, containing the
non-negative integers. With this type, we can program any computable function on the
natural numbers like in PCF [80]. Lastly, Σi∈I Ai is the sum type over a �nite collection
of types and A×B contains pairs of values.

The computation types consist of:

C,D ::= FA | A → C | Πi∈I Ci

with I again being a �nite indexing set. FA is a producer type. When terms of this
type are evaluated, they perform a computation which may invoke e�ects and either
produces a value term of typeA or diverges (the evaluation procedure never terminates).
A → B is the type of functions, which is considered a computation type since its terms
are actively awaiting an input, mainly the argument of the function. Lastly, Πi∈I Ci

is the product type over a �nite collection of types. Unlike A×B, this type combines
computations and is considered active, awaiting an index i from the set I as argument,
before continuing its computation.

Note that there is a mismatch between the binary pair type constructor A×B and
the indexed product type constructorΠi∈I Ci, since we follow the type system presented
in [42]. Alternatively, we could replace the indexed type constructors by binary type
constructors A + B, A & B and the empty type 0. Vice versa, we could replace the
pair type constructor by an indexed version. This change will not make any signi�cant
di�erence.

A term's type also depends on its context denoting which variables (from some count-
able list of variables x, y, z, . . .) the term may refer to. Contexts consist of sequences of
distinct variables of value types:

Γ ::= ∅ | Γ, x : A .

The contexts only contain value types, meaning that we can only ever substitute value
terms for variables. Despite this restriction, we can still substitute computation terms
by turning them into values of a thunk type.

1It is of course natural to have �nite indexing sets for sum and product types, as it produces a
�nite syntax. As a result, the sets of terms are countable, which has technical bene�ts as it is helpful
in the formulation of our logic and the Howe's method used in Chapter 4.

2.1. EFFECT-FREE CORE LANGUAGE 11

The value terms consist of:

V,W,L ::= ∗ | Z | S(V) | x | thunk(M) | (j, V) | (V,W)

Whereas the computation terms contain:

M,N,K ::= case V of {M,S(x) ⇒ N} | let x be V.M | return(V) |M to x.N |

force(V) | λx.M |M V | pm V as {. . . , (i.x).M i, . . . } |

pm V as (x, y).M | ⟨M i | i ∈ I⟩ |M j | fix(M)

In several terms, variables are being bound: case V of {M, S(x) ⇒ N} and
M to x.N bind x in N , and both let x be V.M and λx.M bind x in M , whereas
pm V as {. . . , (i.x).M i, . . . } binds x in M i, and pm V as (x, y).M binds x and y in M .
Terms are identi�ed up to α-equivalence ([7, 77]), allowing us to change variable names
when necessary.

We write E...,F... for general types, which may be either value or computation types.
We write P..., R..., Q... for general terms, which can either be value or computation terms.

The typing rules for the terms are given in Figure 2.1. There are two typing judg-
ments, a value typing rule Γ ⊢ V : A which says V is a value of type A with context Γ,
and a computation typing rule Γ ⊢ M : C which says M is a computation of type C

with context Γ. We write Γ ⊢... P... : E... in case the type of the term is generic (i.e. value
or computation). A term is called closed if it is typed in the empty context. For any
type E..., we write Terms(E...) for the set of closed terms of type E....

Lemma 2.1.1. If Γ ⊢... P... : E... and x is not mentioned in P... or Γ, then x : A,Γ ⊢... P... : E....

This can be proven by a routine induction on the typing judgements.
Given a general term P..., a value term V and a variable x, we write P...[V/x] for the

substitution of V for any free occurrence of x in P.... We have the following result which
can be established by a routine induction.

Lemma 2.1.2. If Γ, x : A ⊢... P... : E..., Γ ⊢ V : A, and x is not bound in P..., then

Γ ⊢... P...[V/x] : E....

2.1.1 Operational semantics

Computation terms are active, and may evaluate if they are not in their terminal form.
What they evaluate to must be speci�ed by certain rules. We give the semantics of this
language by specifying a reduction strategy in the style of a CK-machine [18, 42].

We distinguish a special class of computation terms, called terminal computation
terms. They are the terms which will not reduce further.

De�nition 2.1.3. A terminal computation term is a computation term of the form:

return(V), λx.M, or ⟨M i | i ∈ I⟩

12 CHAPTER 2. LANGUAGE AND OPERATIONAL SEMANTICS

Γ ⊢ ∗ : 1 Γ ⊢ Z : N

Γ ⊢ V : N

Γ ⊢ S(V) : N

Γ ⊢ V : N Γ ⊢ M : C Γ, x : N ⊢ N : C

Γ ⊢ case V of {M,S(x) ⇒ N} : C

Γ, x : A,Γ′ ⊢ x : A

Γ ⊢ V : A Γ, x : A ⊢ M : C

Γ ⊢ let x be V.M : C

Γ ⊢ V : A

Γ ⊢ return(V) : FA

Γ ⊢ M : FA Γ, x : A ⊢ N : C

Γ ⊢ M to x.N : C

Γ ⊢ M : C

Γ ⊢ thunk(M) : UC

Γ ⊢ V : UC

Γ ⊢ force(V) : C

Γ, x : A ⊢ M : C

Γ ⊢ λx.M : A → C

Γ ⊢ V : A Γ ⊢ M : A → C

Γ ⊢ M V : C

j ∈ I Γ ⊢ V : Aj

Γ ⊢ (j, V) : Σi∈I Ai

Γ ⊢ V : Σi∈I Ai Γ, x : Ai ⊢ M i : C for each i ∈ I

Γ ⊢ pm V as {. . . , (i.x).M i, . . . } : C

Γ ⊢ V : A Γ ⊢W : B

Γ ⊢ (V,W) : A×B

Γ ⊢ V : A×B Γ, x : A, y : B ⊢ M : C

Γ ⊢ pm V as (x, y).M : C

Γ ⊢ M i : Ci for each i ∈ I

Γ ⊢ ⟨M i | i ∈ I⟩ : Πi∈I Ci

Γ ⊢ M : Πi∈I Ci j ∈ I

Γ ⊢ M j : Cj

Γ ⊢ M : UC → C

Γ ⊢ fix(M) : C

Figure 2.1: Typing rules

For most computation types C, there are closed terminal computation terms M
such that M ∈ Terms(C). We denote by Tct(C) the set of such terms of type C. Note
for instance that Tct(FA) = {return(V) | V ∈ Terms(A)}.

We �rst give the rules for terms we can directly reduce. These correspond to β-
reduction rules, where the continuation of the computation is apparent.

De�nition 2.1.4. We de�ne the relation ⇝ on closed computation terms, which gives
a partial function Terms(C) → Terms(C) according to the following rules:

1. case Z of {M,S(x) ⇒ N} ⇝ M

2. case S(V) of {M, S(x) ⇒ N} ⇝ N [V/x]

3. let x be V.M ⇝ M [V/x]

2.1. EFFECT-FREE CORE LANGUAGE 13

4. force(thunk(M)) ⇝ M

5. pm (j, V) as {. . . , (i.x).M i, . . . } ⇝ M j [V/x]

6. pm (V,W) as (x, y).M ⇝ M [V/x,W/y]

7. fix(M) ⇝ M thunk(fix(M))

Given a routine induction we can establish the following result.

Lemma 2.1.5. If ⊢ M : C and M ⇝ N , then ⊢ N : C .

Sometimes, the reduction of a subterm is required in order to continue the evaluation
of the term. For instance in the case of M V , we need to �rst reduce the subterm M to
a terminal like λx.N before we can apply it to V . To handle this, we de�ne stacks which
are used to express future continuations of the computation. Such stacks have a similar
roles as evaluation contexts where the term considered for evaluation is highlighted
[19, 107]. The stacks are given by:

S,Z ::= ε | S ◦ ((−) to x.M) | S ◦ ((−) V) | S ◦ ((−) j) ,

where j is an element of an indexing set for product types. We denote by S@Z the
result of appending stack S with stack Z. A stack accepts terms of one computation
type, and returns a term of another computation type. We can denote the types of
stacks by S : C ⇒ D where:

ε : C ⇒ C.
If S : C ⇒ D and x : A ⊢ M : C, then S ◦ (−) to x.M : FA ⇒ D.
If S : C ⇒ D and V : A, then S ◦ (−) V : (A → C) ⇒ D.
If S : C ⇒ D and Cj = C, then S ◦ (−) j : ΠI∈Cj

⇒ C

Let Stack(C,D) be the set of stacks with type C ⇒ D. For any pair (S,M) ∈
Stack(C,D)× Terms(C), we can substitute M into the stack S.

De�nition 2.1.6. We denote by S{M} : D the computation term resulting from the
substitution of a term M : C in a stack S ∈ Stack(C,D), according to the rules:

ε{M} :=M

(S ◦ (−) to x.N){M} := S{M to x.N}

(S ◦ (−) V){M} := S{M V }

(S ◦ (−) i){M} := S{M i}

We can interpret a pair (S,M) as the computation term S{M}, where currently the
reduction of the computation is focussed on reducing M . Whenever you encounter a
computation of which you need to �rst evaluate a subterm, you unfold the outermost
term constructor into the Stack and continue evaluating the subterm.

14 CHAPTER 2. LANGUAGE AND OPERATIONAL SEMANTICS

De�nition 2.1.7. For each computation type C, the stack reduction relation ↣
gives a partial function

⋃︁
D(Stack(D,C)×Terms(D)) →

⋃︁
D(Stack(D,C)×Terms(D))

according to the following rules:

1. If M ⇝ N , then (S,M) ↣ (S,N).

2. (S,M to x.N) ↣ (S ◦ (−) to x.N,M).

3. (S ◦ (−) to x.N, return(V)) ↣ (S,N [V/x]).

4. (S,M V) ↣ (S ◦ (−) V,M).

5. (S ◦ (−) V, λx.M) ↣ (S,M [V/x])

6. (S,M j) ↣ (S ◦ (−) j,M).

7. (S ◦ (−) j, ⟨M i | i ∈ I⟩) ↣ (S,M j)

This de�nition is well-de�ned because of the type preservation properties, as given in
Lemmas 2.1.2 and 2.1.5.

For a relation R, we write R∗ for the re�exive and transitive closure of R. When
we want to evaluate a computation M , we proceed by evaluating the pair (ε,M). So if
(ε,M)↣∗ (ε,N) where N : C is a terminal computation term, we say that M reduces

to N . We can observe the following fact.

Lemma 2.1.8. For each M : C there is at most one terminal computation term N : C

such that (ε,M)↣∗ (ε,N).

Proof. This is an immediate consequence of the fact that any pair (S,M) has at most
one pair (Z,N) it can reduce to via ↣. Moreover, for any terminal computation term
N : C, the pair (ε,N) cannot reduce to anything. Given these facts, the result follows
from a routine induction.

With the inclusion of �xpoint operators, computations may diverge. We specify for
every computation type, a canonical nonterminating computation

Ω := fix(λx. force(x)) : C .

This term diverges, because for any stack S the reduction relation creates a cycle:

(S,Ω)↣ (S, λx. force(x) thunk(Ω))↣ (S ◦ (−) thunk(Ω), λx. force(x))↣

↣ (S, force(thunk(Ω)))↣ (S,Ω) .

Since the reduction relation is deterministic, by Lemma 2.1.8, we can conclude that Ω
does not reduce to a terminal computation term.

We write⊛ as short for the terminal computation term return(∗). We can observe the
di�erence between call-by-name and call-by-value by looking at a program `(λx.⊛) Ω'.
The call-by-name interpretation of this term in our language is `(λx.⊛) thunk(Ω)' which

2.2. ADDING ALGEBRAIC EFFECTS 15

reduces neatly to ⊛. The call-by-value interpretation is `Ω to x. (λy.⊛) x', which re-
duces to the pair `(ε ◦ (−) to x. (λy.⊛) x,Ω)', which diverges. See [42] for a precise
embedding of call-by-value and call-by-name PCF into this language.

For simplicity in our examples, we add some more syntactic sugar.

� rt(M) := return(thunk(M)).

� (M ;N) :=M to x.N , when is x not free in N . This is a special kind of sequencing
where �rst M is evaluated and then N is evaluated. The �nal result will be the
result produced by N , whereas the result produced by M is discarded.

� 0 := Z and for all natural numbers n ∈ N, n+ 1 := S(n).

2.2 Adding algebraic e�ects

To the language de�ned in the previous section, we add a collection of algebraic e�ects
in the style of [82]. E�ects are those aspects of computation that involve a program
interacting with the world `outside'; for example: nondeterminism, probabilistic choice
(in both cases, the choice is deferred to the environment); input/output; and mutable
store (the machine state is modi�ed). Algebraic e�ects in particular are e�ects modelled
by e�ect-triggering operations, whose `algebraic' nature means that e�ects act indepen-
dently of the continuation. In particular, it holds that stacks distribute over algebraic
e�ect operations.

What moreover makes these e�ects algebraic is the way in which they are generated.
In general, an e�ect is speci�ed using an e�ect signature Σ, which is a set containing
one or more e�ect operators. Each operator combines a tuple of arguments given by
computations into a single computation. How such a combination behaves depends on
the speci�c e�ect in question. An e�ect operator has a speci�ed arity. We consider
arities of the following forms:

Nn × αm → α Nn × (αN) → α

where n and m are non-negative integers. Normally in the literature, the word arity is
used to designate the number of arguments an operation has. Using that formulation,
we can see the above `arities' as describing a family of operations (indexed by Nn) of
arity m and N respectively. For convenience, we use the word arity in this thesis to
mean the more descriptive functional forms above. There, the symbol α is used as
a mnemonic device, which can be instantiated by any computation type. The arity
shows us how computations can be combined into a single computation of type α. With
the inclusion of type polymorphism in Chapter 7, the e�ect operators can be seen as
polymorphic functional terms, where α is a polymorphic type.

Note that in the arities, both n and m can be zero, in which case no arguments of
that type are necessary. An example of an e�ect operator is or(−,−) : N0 × α2 → α,
which combines two computations M and N into a single computation or(M,N). This
new computation will, when evaluated, continue evaluation with eitherM or N . Which

16 CHAPTER 2. LANGUAGE AND OPERATIONAL SEMANTICS

of the two computations is evaluated depends on the behaviour of the e�ect; for instance
it can be determined by some probabilistic procedure, or by a scheduler of the operating
system. As another example of e�ect operator, consider updatel(−;−) : N1 × α1 → α,
where updatel(n;M) stores the number n at some global store location l, and continues
evaluation with M .

The e�ect operators pertaining to the e�ects we want to study are collected in
an e�ect signature Σ, giving a set of e�ect operators. Given such a signature, new
computation terms can be constructed according to the typing rules in Fig. 2.2. There,
op(V1, . . . , Vn, x ↦→M) binds x in M .

Γ ⊢ Vi : N for each 1 ≤ i ≤ n Γ ⊢ M i : C for each 1 ≤ i ≤ m

Γ ⊢ op(V1, . . . , Vn,M1, . . . ,Mm) : C
op : Nn × αm→α ∈ Σ

Γ ⊢ Vi : N for each 1 ≤ i ≤ n Γ, x : N ⊢ M : C

Γ ⊢ op(V1, . . . , Vn, x ↦→M) : C
op : Nn × αN → α ∈ Σ

Figure 2.2: E�ect typing rules

Remark: We use N for arguments of algebraic e�ect operations, since it is the only
non-trivial base type in the language. Other cases, in which we for example want to
used Boolean-valued arguments, can be simulated using natural numbers.

In the presence of algebraic e�ects, computation terms may be reduced to trees
of e�ect operators. Whenever we encounter an e�ect operator in the evaluation of a
computation term, we continue the reduction for each of its arguments, collecting all the
continuations into a tree. This way, we de�ne an operational semantics which reduces
a computation term to a tree whose internal nodes are e�ect operators and leaves are
either labelled by ⊥ (representing divergence) or by terminal terms.

De�nition 2.2.1. An e�ect tree (henceforth tree), over a set X, determined by a
signature Σ of e�ect operations, is a labelled and possibly in�nite depth tree whose
nodes have the following possible forms:

1. A leaf node labelled with ⊥ (representing divergence).

2. A leaf node labelled with ⟨x⟩ where x ∈ X.

3. A node labelled opl1,...,ln with children t1, . . . , tm, when the operator op ∈ Σ has
arity Nn × αm → α and l1, . . . , ln ∈ N. In this case, we write the subtree at that
node as opl1,...,ln⟨t1, . . . , tm⟩.

4. A node labelled opl1,...,ln with an in�nite sequence t0, t1, . . . of children, when the
operator op ∈ Σ has arity Nn×αN → α and l1, . . . , ln ∈ N. In this case, we write
the subtree at that node as opl1,...,ln⟨m ↦→ tm⟩.

2.2. ADDING ALGEBRAIC EFFECTS 17

The set of e�ect trees over a set X determined by Σ is denoted by TΣ(X), but we
tend to just write it as T (X) in case Σ can be inferred from the context. We de�ne a
partial ordering on T (X) where t1 ≤ t2, if t1 can be obtained by pruning t2, removing
a possibly in�nite number of subtrees of t2 and putting a leaf node labelled ⊥ in their
place. In particular, ⊥ ≤ t for any tree t. This forms an ω-complete partial order,
meaning that every ascending sequence t1 ≤ t2 ≤ . . . has a least upper bound

⨆︁
n tn.

Given f : X → Y and a tree t ∈ T (X), we write t[x ↦→ f(x)] ∈ T (Y) for the
tree whose leaves labelled by ⟨x⟩ for any x ∈ X are renamed to leaves labelled ⟨f(x)⟩.
We de�ne f∗ := T (f) : T (X) → T (Y) for the function sending t to t[x ↦→ f(x)],
so T (−) can be considered a functor in the category of sets. We have a function
µ : T (T (X)) → T (X), which takes a tree r of trees and `�attens' it to a tree µr ∈ T (X),
by taking the labelling tree at each non-⊥ leaf of r as the subtree at the corresponding
node in µr. The function µ is the multiplication associated with the monad structure
of the T (−) operation. The unit of the monad is the map η : X → T (X) which takes
an element x ∈ X and returns the tree whose root is the leaf labelled ⟨x⟩.

Proposition 2.2.2. The triple (T (−), η, µ) is a monad on the category of sets.

We will de�ne the operational semantics of our language in terms of such e�ect trees.
These trees may carry information that would not be detectable by an observer of the
program. However, in order to treat algebraic e�ects in a generic way, we choose to
de�ne the operational semantics using trees dependent only on the algebraic signature
Σ of the e�ects. We postpone the interpretation of behaviour of e�ects to the next
chapter, where we de�ne behavioural properties of programs in terms of e�ect trees.
Those properties will be de�ned in such a way that they do not distinguish between
behaviourally equivalent terms.

For a computation type C we write T (C) := T (Tct(C)), and T (A) :=

T (Tct(FA)) (= T (FA)). The latter is isomorphic to T (Terms(A)) (e.g., T (1) =

T ({∗})), and the two may be used interchangeably. We will de�ne a reduction relation
from computations to trees of terminal computation terms. The operational mapping
from a computation M ∈ Terms(C) to an e�ect tree T (C) is de�ned intuitively as fol-
lows. Start evaluating the M in the empty stack ε, until the evaluation process (which
is deterministic) terminates (if this never happens, the tree is ⊥). If the evaluation
process terminates at a con�guration of the form (ε,N), where N is a terminal compu-
tation term, then the tree consists of one leaf labelled ⟨N⟩. Otherwise the evaluation
process can only terminate at a con�guration of the form (S, op(. . .)) for some e�ect
operation op ∈ Σ. In this case, create an internal node in the tree of the appropriate
kind (depending on op) and continue generating each child tree of this node, repeating
the above process on the appropriate subcomputation using stack S.

Formally, we de�ne the tree reduction for computation terms as a function
| − | : Terms(C) → T (C), which returns a tree whose leaves are either ⊥ or termi-
nal computation terms of C 2. We do this inductively by �rst de�ning approximations

2In the case of an operator of arity zero, we can have an `internal end node' given by that operator,
which we do not count as a leaf, even though it has no children

18 CHAPTER 2. LANGUAGE AND OPERATIONAL SEMANTICS

of this tree.

De�nition 2.2.3. The approximating tree reduction is a function |−,−|(−) from⋃︁
D Stack(D,C)× Terms(D)× N to T (C) de�ned using the following rules:

1. |S,M |0 := ⊥

2. |ε,M |n+1 := ⟨M⟩ if M is a terminal computation term.

3. |S,M |n+1 := |S′,M ′|n if (S,M) ↣ (S′,M ′).

4. |S, op(n1, . . . , nk,M1, . . . ,Mm)|n+1 := opn1,...,nk
⟨|S,M1|n, . . . , |S,Mm|n⟩

if op : Nk × αm → α.

5. |S, op(n1, . . . , nk, x ↦→M)|n+1 := opn1,...,nk
⟨m ↦→ |S,M [m/x]|max(0,n−m)⟩

if op : Nk × αN → α.

A tree t is �nite if it has only �nitely many nodes and non-⊥ leaves. Equivalently:

De�nition 2.2.4. A tree t ∈ T (X) is �nite if the set {r ∈ T (X) | r ≤ t} is �nite.

Note that for any pair (S,M) and any natural number n ∈ N, |S,M |n is �nite. In
particular, the de�nition for | − |n+1 for e�ect nodes with countably many children has
been formulated in such a way, using `max', to ensure that this property holds.

Lemma 2.2.5. For any pair (S,M) ∈ Stack(D,C)×Terms(D) and any natural number

n ∈ N, |S,M |n ≤ |S,M |n+1.

Proof. We prove this by an induction on n. If n = 0, then |S,M |0 = ⊥ ≤ |S,M |1.
Assume the statement holds for all k smaller or equal to n. We do a case analysis.

1. If (S,M) = (ε,N) with N terminal, then |S,M |n+1 = ⟨N⟩ = |S,M |(n+1)+1.

2. If (S,M)↣ (Z,N), then |S,M |n+1 = |Z,N |n, which by induction hypothesis is
smaller or equal to |Z,N |n+1 = |S,M |n+2.

3. If M = op(n1, . . . , nk,M1, . . . ,Mm), then |S,M |n+1 =

opn1,...,nk
⟨|S,M1|n, . . . , |S,Mm|n⟩. By the induction hypothesis, |S,M i|n ≤

|S,M i|n+1 for each 1 ≤ i ≤ k. Hence |S,M |n+1 ≤
opn1,...,nk

⟨|S,M1|n+1, . . . , |S,Mm|n+1⟩ = |S,M |n+2.

4. If M = op(n1, . . . , nk, x ↦→ N), then

|S,M |n+1 = opn1,...,nk
⟨m ↦→ |S,N [m/x]|max(0,n−m)⟩. By induction hypothesis,

for each m, |S,N [m/x]|max(0,n−m) ≤ |S,N [m/x]|max(0,n+1−m), hence |S,M |n+1 ≤
opn1,...,nk

⟨m ↦→ |S,N [m/x]|max(0,n+1−m)⟩ = |S,M |n+2.

2.2. ADDING ALGEBRAIC EFFECTS 19

Because of the previous Lemma, we can take the supremum of the sequence, de�ning
|S,M | :=

⨆︁
n |S,M |n. Using this, we de�ne |M |n := |ε,M |n and |M | := |ε,M | =⨆︁

n |M |n. For instance, since Ω diverges, any approximation |Ω|n will yield ⊥ and hence
|Ω| = ⊥. We look at some other general results, which are quite technical. The reader
who would like to skip the technical material on �rst reading may continue reading at
Section 2.3.

Lemma 2.2.6. For any triple (S,Z,M) ∈ Stack(C′,C) × Stack(D,C′) × Terms(D)

and any natural number n, |S@Z,M |n ≤ µ(|Z,M |n[N ↦→ |S,N |n]).

Proof. We prove this by induction on n.
Suppose n = 0, then |S@Z,M |0 = ⊥ ≤ µ(|Z,M |n[N ↦→ |S,N |n]).
Suppose the statement holds for any k ≤ n, we prove it holds for n + 1 by case

analysis on (Z,M).

1. If (Z,M) = (ε,N) with N a terminal computation term, then |S@Z,M |n+1 =

|S,N |n+1 = µ(⟨N⟩[N ′ ↦→ |S,N ′|n+1]) = µ(|M |n+1[N
′ ↦→ |S,N ′|n+1]) =

µ(|Z,M |n+1[N
′ ↦→ |S,N ′|n+1]).

2. If (Z,M) ↣ (Z ′,M ′), then by induction |S@Z,M |n+1 = |S@Z ′,M ′|n, which
by induction hypothesis is smaller or equal to µ(|Z ′,M ′|n[N ↦→ |S,N |n]) =

µ(|Z,M |n+1[N ↦→ |S,N |n]). By Lemma 2.2.5, this is smaller or equal to
µ(|Z,M |n+1[N ↦→ |S,N |n+1]).

3. If M = op(n1, . . . , nk,M1, . . . ,Mm), then |S@Z,M |n+1 =

opn1,...,nk
⟨|S@Z,M1|n, . . . , |S@Z,Mm|n⟩. Each |S@Z,M i|n is by induction hy-

pothesis smaller or equal to µ(|Z,M i|n[N ↦→ |S,N |n]). Hence |S@Z,M |n+1 ≤
opn1,...,nk

⟨µ(|Z,M1|n[N ↦→ |S,N |n]), . . . , µ(|Z,Mm|n[N ↦→ |S,N |n])⟩ ≤
µ(opn1,...,nk

⟨|Z,M1|n[N ↦→ |S,N |n], . . . , |Z,Mm|n[N ↦→ |S,N |n]⟩) ≤
µ(opn1,...,nk

⟨|Z,M1|n, . . . , |Z,Mm|n⟩[N ↦→ |S,N |n]) ≤
µ(|Z,M |n+1[N ↦→ |S,N |n]). By Lemma 2.2.5, this is smaller or equal to
µ(|Z,M |n+1[N ↦→ |S,N |n+1]).

4. If M = op(n1, . . . , nk, x ↦→ N), the proof goes similarly to 3.

Corollary 2.2.7. |S{M to x.N}|n+1 ≤ µ(|M |n[return(V) ↦→ |S{N [V/x]}|n]).

Proof. If S is of length l ∈ N, then |S{M to x.N}|n+1 = |S,M to x.N |n+1−l =

|S ◦ − to x.N,M |n−l. If n ≤ l, then |S{M to x.N}|n+1 = ⊥ and the statement holds.
So we may assume that n > l.

|S ◦ − to x.N,M |n−l ≤ µ(|M |n−l[return(V) ↦→ |S ◦ − to x.N, return(V)|n−l]) by
Lemma 2.2.6. Since for any V , |S ◦ − to x.N, return(V)|n−l = |S,N [V/x]|n−1−l =

|S{N [V/x]}|n−1, it holds that |S ◦ − to x.N,M |n−l ≤ µ(|M |n−l[return(V) ↦→
|S{N [V/x]}|n−1]), which is lower or equal to µ(|M |n[return(V) ↦→ |S{N [V/x]}|n]).

20 CHAPTER 2. LANGUAGE AND OPERATIONAL SEMANTICS

Lemma 2.2.8. For any triple (S,Z,M) ∈ Stack(C′,C) × Stack(D,C′) × Terms(D)

and any two natural numbers n, k, µ(|Z,M |n[N ↦→ |S,N |k]) ≤ |S@Z,M |n+k+1.

Proof. We prove this by induction on n.
Suppose n = 0, then µ(|Z,M |0[N ↦→ |S,N |k]) = µ(⊥) = ⊥ ≤ |S@Z,M |n+k+1.
Suppose the statement holds for any n′ ≤ n, we prove it holds for n + 1 by case

analysis on (Z,M).

1. If (Z,M) = (ε,M ′) with M ′ terminal, then µ(|Z,M |n+1[N ↦→ |S,N |k]) =

µ(⟨M ′⟩[N ↦→ |S,N |k]) = |S,M ′|k = |S@Z,M |k ≤ |S@Z,M |n+k+2.

2. If (Z,M) ↣ (Z ′,M ′), then µ(|Z,M |n+1[N ↦→ |S,N |k]) = µ(|Z ′,M ′|n[N ↦→
|S,N |k]) which by induction hypothesis is smaller or equal to |S@Z ′,M ′|n+k+1 ≤
|S@Z,M |n+k+2.

3. If M = op(l1, . . . , ll,M1, . . . ,Mm), then µ(|Z,M |n+1[N ↦→ |S,N |k]) =
µ(opl1,...,ll⟨|Z,M1|n, . . . , |Z,Mm|n⟩[N ↦→ |S,N |k]) =
µ(opl1,...,ll⟨|Z,M1|n[N ↦→ |S,N |k], . . . , |Z,Mm|n[N ↦→ |S,N |k]⟩) =
opl1,...,ll⟨µ(|Z,M1|n[N ↦→ |S,N |k]), . . . , µ(|Z,Mm|n[N ↦→ |S,N |k])⟩ ≤
opl1,...,ll⟨|S@Z,M1|n+k+1, . . . , |S@Z,Mm|n+k+1⟩ = |S@Z,M |n+k+2.

4. If M = op(l1, . . . , lk, x ↦→ N), the proof goes similarly to 3.

As a consequence of the previous two lemmas we can conclude with the following
proposition:

Proposition 2.2.9. For any triple (S,Z,M) ∈ Stack(C′,C) × Stack(D,C′) ×
Terms(D), |S@Z,M | = µ(|Z,M |[N ↦→ |S,N |]).

Proof. By Lemma 2.2.6 and Lemma 2.2.8, it holds for any n ∈ N that:
|S@Z,M |n ≤ µ(|Z,M |n[N ↦→ |S,N |n]) ≤ |S@Z,M |2n+1, so the suprema of the two

sequences {|S@Z,M |n}n∈N and {µ(|Z,M |n[N ↦→ |S,N |n])}n∈N are identical.

Since |ε, S{M}| = |S,M | we can derive with Proposition 2.2.9:

Corollary 2.2.10. The following three statements hold:

1. |M to x.N | = µ(|M |[return(V) ↦→ |N [V/x]]).

2. |M V | = µ(|M |[λx.N ↦→ |N [V/x]|]).

3. |M j| = µ(|M |[⟨N i | i ∈ I⟩ ↦→ |N j |]).

In the future, we will sometimes use t[V ↦→ f(V)] as shorthand for t[return(V) ↦→ f(V)].
As discussed before, at De�nition 2.2.4, a tree t is �nite if and only if it has �nitely

many non-⊥ nodes. Finite trees are exactly the �nite elements of the domain T (X),

2.3. EXAMPLES OF EFFECTS 21

which has the following consequence: if r ≤
⨆︁
n tn for r �nite and {tn}n∈N some ascend-

ing sequence, then r ≤ tn for some n ∈ N. Moreover, if opl1,...,lm(t0, t1, t2, . . .) is �nite,
then for some n ∈ N, it holds that ∀k ∈ N, k > n =⇒ tk = ⊥.

Moreover, any �nite tree in T (C) occurs as the computation tree of a computation
term in the empty stack.

Lemma 2.2.11. For any �nite tree t ∈ T (Terms(C)), there is a term M : C such that

|M | = µ(t[N ↦→ |N |]).

Proof. Any such �nite tree t ∈ T (C) can be transformed into a term by the following
inductively de�ned function f : T (C) → Terms(C):

f(⟨M⟩) =M .
f(⊥) = Ω.
f(opl1,...,lm(t1, . . . , tk)) := op(l1, . . . , lm, f(t1), . . . , f(tk)).
f(opl1,...,lm(t0, . . . , tk,⊥, . . .)) := op(l1, . . . , lm, x0 ↦→

case x0 of {f(t0), S(x1) ⇒
case x1 of {f(t1), S(x2) ⇒ . . .

...
case xk of {f(tk), S(xk+1) ⇒ Ω}}}).

The last part uses some iteration of case distinctions on the natural numbers. If t is
�nite, then the function f is de�ned, and it can be proven that |f(t)| = µ(t[N ↦→ |N |])
with a simple induction on �nite trees.

Corollary 2.2.12. For any �nite tree t ∈ T (C) = T (Tct(C)), there is a term M : C

such that |M | = t.

2.3 Examples of e�ects

We will look at some examples of e�ects and their signatures of e�ect operators. Our
focus here is to de�ne the particular e�ect operators needed to describe certain e�ects,
giving only a rough idea of the behaviour of the e�ect. The operational semantics are
given in terms of trees, which in general gives a lot of information irrelevant to the
behaviour of an e�ect. The precise interpretation of behaviour for the di�erent e�ects
will be given in Chapter 3. The examples given here are mainly the standard examples
of algebraic e�ects, taken partially from [35, 82, 84].

2.3.1 Pure

The �rst example is the case where there are no e�ects present, resulting in a language
of pure functional computations, a call-by-push-value variant of PCF [80]. This entails
taking the empty signature Σ∅ := ∅, in which case the set of trees over a set X is given
by the disjoint union TΣ∅(X) := X⊥ = X ∪{⊥}. When describing elements of TΣ∅(X),

22 CHAPTER 2. LANGUAGE AND OPERATIONAL SEMANTICS

we will omit the use of `inleft' and `inright'. Here T (X) = X⊥ has the expected domain
structure where x ≤ y ⇐⇒ x ∈ {⊥, y}.

2.3.2 Error

We can extend the language with a set of error messages. We take a set of error
messages Err, and for each of these messages e ∈ Err we add an e�ect operator raisee()

with arity N0 × α0 → α, which simpli�es to 1 → α. This arity describes the fact that
no continuation is possible after the error has been raised. Our signature is given by
Σer := {raisee() : 1 → α | e ∈ Err}, where the computation raisee() aborts evaluation
and displays e as an error message.

Alternatively, we may allow the program to give some more feedback about the
particular error to accompany the message. To this end we may give some of the
algebraic e�ect operators an extra natural number as input, taking raisee() : N → α.
For simplicity, we will only consider the former de�nition.

The trees over a set X can be given by the disjoint union (X∪Err)⊥ = X∪Err∪{⊥}
(we will omit the use of `inleft' and `inright'). An example of a possible use for error
messages is the `safe' predecessor function, which raises an error if you ask for the
predecessor of zero.

Pred := λy : N.case y of {Z ⇒ raiseNegative();S(x) ⇒ return(x)} .

This generates the following 'trees':

|Pred 0| = raiseNegative |Pred (n+ 1)| = ⟨n⟩ .

2.3.3 Nondeterminism

Nondeterminism can arise in many ways. It may arise as the result of decisions made
by some external scheduler, or from the particular environment in which the program
is run. The key characteristic of nondeterminism is that we cannot predict how a
computation will continue its reduction.

One way of implementing this algebraically is by taking a binary choice operator
or(−,−) : α2 → α which gives two options for continuing the computation. Given
two computations M and N , or(M,N) is the computation which will either continue
evaluation with M or with N . Which of the two it will be is however unknown. The
choice of continuation can be understood as being under the control of an external agent,
which one may wish to model as being cooperative (angelic), antagonistic (demonic),
or completely unpredictable (neutral).

Our signature in this case only contains this binary choice operator, with Σnd :=

{or(−,−) : α2 → α}. Trees over X are given by binary trees whose leaves are either
labelled by ⊥ or labelled by elements from X.

An example of a nondeterministic computation is a term of type FN which may
return any natural number:

2.3. EXAMPLES OF EFFECTS 23

? := fix(λx : 1 → N. or(λy : 1. Z , λy : 1. xy to z. return(S(z)))) to w.w∗

or

⟨0⟩ or

|?| = ⟨1⟩ or

⟨2⟩

Alternatively, we may want to implement countable choice using an operator
c-or(−) : αN → α. However, with the tools used in this thesis, we will not be able
to prove that the behavioural equivalence for demonic or neutral nondeterminism with
countable choice is compatible (Theorem 3.3.8). We will discuss this in more detail in
Subsection 3.3.2.

2.3.4 Probabilistic choice

Similarly to the previous example, this illustrates the scenario where a computation's
results may di�er on di�erent runs. However, here this variation is controlled by chance,
and hence we can speak of the probability that a computation produces a certain output.

Again we implement this using a single binary choice operator pr(−,−) : α2 → α

which gives two options for continuing the computation, with e�ect signature Σpr :=

{pr(−,−) : α2 → α}. In this case, the choice of continuation is probabilistic, where
pr(M,N) has an equal probability of either continuing with the computation M , or
with the computation N . This is di�erent from nondeterminism, in which we cannot
associate a probability to the continuations. Trees over X are given by binary trees
whose leaves are either ⊥ or from X.

The following gives an example of how a dice throw can be simulated using the
�xpoint operator and fair choice. We use ret(V) as shorthand for return(V). Notice
that the tree is de�ned recursively in terms of itself, leading to an in�nite tree.

Dice := fix(λx. pr(pr(force(x), pr(ret(1), ret(2))), pr(pr(ret(3), ret(4)), pr(ret(5), ret(6)))))

pr

|Dice| = pr pr

|Dice| pr pr pr

⟨1⟩ ⟨2⟩ ⟨3⟩ ⟨4⟩ ⟨5⟩ ⟨6⟩

24 CHAPTER 2. LANGUAGE AND OPERATIONAL SEMANTICS

We could alternatively give our program easier control over the probability by im-
plementing it with a weighted operator w-or(−,−,−,−) : N2 × α2 → α. We interpret
w-or(n,m,M,N) as the computation which has n

n+m probability of continuing with M
and m

n+m probability of continuing with N . If n = m = 0, the computation is resolved
via fair choice. This is just one way of incorporating weighted probabilistic choice. The
particular choice of de�nition does not matter however, since any type of weighted prob-
abilistic choice operator can be programmed in terms of the fair choice operator and
recursion. See for instance how the computation Dice de�ned above recursively models
a fair choice between six possible continuations.

2.3.5 Global store

Here we look at the case where programs can interact with some global memory, being
able to read from it and write to it.

We take a set of locations Loc for storing natural numbers. For each l ∈ Loc we
have two e�ect operators lookupl(−) : αN → α and updatel(−;−) : N × α → α, so its
signature is given by Σgs := {lookupl(−), updatel(−;−) | l ∈ Loc}. The computation
lookupl(x ↦→ M) looks up the number at location l and substitutes it for x in M , and
updatel(n;M) stores n at location l and then continues with the computation M .

The following computation accepts as an argument a natural number, which it will
store at location l. After that, it will check the same location l and produce whatever
is stored there.

V := λy : N.updatel(y; lookupl(λx : N. return(x))) : N → N

updatel,1

|V 1| = lookupl

⟨0⟩

0

⟨1⟩

1

⟨2⟩

2

. . . ⟨n⟩

n

We see that the resulting tree exhibits redundancies with respect to the expected model
of computation with global store. Since the updatel operation sets the value of location
l to 1, the ensuing lookupl operation will retrieve the value 1, and so execution will
proceed down the branch labelled 1 resulting in the return value 1. The other in�nitely
many leaves of the tree are redundant. These redundancies are a result of the operational
semantics being de�ned independently of the e�ect behaviour, as motivated before. In
the next chapter, the behaviour of such computations will be speci�ed accordingly,
keeping the above considerations in mind.

There are several variations we might consider. We look at three, though they
are not exhaustive. Firstly we can consider partiality, where some store locations may
be empty, and we have a way to clear the contents of a location with the operator
clearl(−) : α → α. Secondly we may limit the way with which we are able to update

2.3. EXAMPLES OF EFFECTS 25

a store, e.g., only allowing to add one to the store with addl(−) : α → α. Lastly, we
might number the store locations with natural numbers, and make choosing the location
interactive with lookup(−)(−) : N × αN → α and update(−)(−;−) : N2 × α → α.
Such variations considers stores as heaps allowing for pointer arithmetics, like the ones
considered in the separation logic [68, 69, 89]. Though the above examples of variations
on global store are very natural, they are not considered further on in the thesis. These
examples may be studied in the future.

2.3.6 Input/Output

Here we consider an interaction with some external entity, for instance another computer
or a human user. In this case, we have no way of predicting how this outside source will
behave. However, unlike in the case of nondeterminism, the particular choices made are
observable. For example, the users of a computer know which buttons they pressed to
get a certain result.

Here we have two operators, read(−) : αN → α which reads a number from an input
channel and passes it as the argument to a computation, and write(−;−) : N× α→ α

which prints a number (the �rst argument) on the screen and then continues as the
computation given as the second argument. Combined they have the signature Σio :=

{read(−) : αN → α,write(−;−) : N× α→ α}.
The following example simply displays the number from some input on the screen.

Echo := read(x ↦→ x) to y.write(y;⊛)

read

0

1
2

n

write0 write1 write2 . . . writen

⟨∗⟩ ⟨∗⟩ ⟨∗⟩ ⟨∗⟩

We take this opportunity to emphasize that the natural numbers, elements of type
N, are used as an abstraction of types of decidable datasets. One could easily extend
the language to include other decidable discrete types, like strings of symbols, which
are more appropriate for input/output. However for simplicity, we only use its mathe-
matically isomorphic counterpart N.

2.3.7 Timer

This e�ect controls the passage of time, and can be used to study two di�erent e�ectful
phenomena. Firstly, we may want to delay the computation for a particular amount of
time. Secondly, we might want to keep track of time spent on an evaluation by explicitly
tagging particular subterms of a program we know to take a long time to evaluate.

We make some arbitrary choices in our implementation of timer. Firstly, we do not
model inherent computation timing. We only look at time we explicitly �ag. One could

26 CHAPTER 2. LANGUAGE AND OPERATIONAL SEMANTICS

use a similar mechanism to �ag some other resource, like monetary cost or memory. As
such, we see this example as an illustrative case of more general phenomena.

We de�ne a countable set of positive rational time increments Inc ⊂ Q>0,
3 where

for each c ∈ Inc we have an operator tickc(−) : α → α. Our e�ect signature is Σti :=

{tickc(−) : α → α | c ∈ Inc}, where tickc(M) is the computation where evaluation
gets postponed for c units of time, after which it continues with M . Note that the
same operator could alternatively be used to keep track of the evaluation time of a
computation, using the operator as a token. If a certain part of the evaluation takes
a certain amount of time, this operator can be used to mark the computation of that
evaluation, so one can keep track of how many times that evaluation has occurred.

As an example, consider the functional termM := λx. (force(x); force(x)) and apply
it to the term V := thunk(tick1(return(W))).

tick1

|M V | := tick1

⟨W ⟩

Since M forces evaluation of its argument twice, and V invokes a `tick' when evaluated,
the resulting tree exhibits two `ticks'.

Alternatively, we can have the program determine the number of milliseconds the
computation gets postponed using a single sleep operator sleep(−;−) : N × α → α.
Moreover, as mentioned before, this example is part of a bigger group of examples
modelling costs, where other resources like money or memory can be considered. These
can be implemented in a similar way.

3The choice of using rationals is arbitrary. Instead, we could have used the natural numbers N or
the positive reals R>0. Other total orders with commutative operations could potentially also work.

3

Behavioural equivalence

The main aim of this thesis is to study notions of equality between programs that feature
e�ectful behaviour. This is done in an axiomatic way, establishing for an e�ect signa-
ture appropriate notions of behaviour for e�ects in the form of modalities. Though by
necessity, this investigation is done for one language, one hopes this would be applicable
to a wide range of languages with e�ects.

In the previous chapter, we have given operational semantics where we see computa-
tions as generating trees. However, such trees do not capture the behaviour of e�ectful
programs, and tend to contain information which is not `observable'. Take for instance
the nondeterministic terms or(M,N) and or(N,M) which may operationally generate
di�erent trees, but are behaviourally indistinguishable.

This brings us to the main notion of equality in this thesis, behavioural equivalence.
Here we look at the behaviour of a program externally. Two programs are di�erent
when they have di�erent behaviours. To formalise this, we need to establish what the
possible properties are for describing this behaviour. In this chapter, we de�ne this
notion of behavioural property and express them using formulas from a logic.

3.1 Design criteria

For every type E..., we are going to de�ne a set Form(E...) of formulas. For each ϕ... ∈
Form(E...), we use P... |= ϕ... to denote that the term P... exhibits the property expressed
by ϕ.... In that case, we say P... satis�es formula ϕ.... The formulas together with the
satisfaction relation |= will induce a behavioural equivalence on terms, where two terms
P..., R... of the same type are behaviourally equivalent, written P... ≡ R..., if they satisfy the
same formulas (see De�nition 3.3.2 later on).

We identify three properties we desire the logic to have. This will guide our formu-
lation of the logic and its formulas.

1. Each formula of the logic should express a property which is behaviourally mean-

ingful. The formulas should align with the natural understanding and interpre-
tation of program behaviour of e�ectful computation, i.e., if P... has the same be-
haviour as R..., then P... |= ϕ... if and only if R... |= ϕ....

27

28 CHAPTER 3. BEHAVIOURAL EQUIVALENCE

2. No program should be able to distinguish between behaviourally equivalent pro-
grams. In other words, substituting two equivalent programs P... ≡ R... in another
program C[−] should yield equivalent programs C[P...] ≡ C[R...].

3. The logic should be as expressive as possible, given the desires expressed by the
previous two points.

According to the �rst criterion, we add to each type basic formulas, which are
either atomic or constructed from formulas of other types. Such basic formulas express
properties pertinent to the type, and thus the choice of formula depends on the type in
question.

Besides these basic formulas, we close each set Form(E...) under in�nitary proposi-
tional logic. Boolean connectives can be used to combine particular facets of computa-
tional behaviour, so following criterion 3 it is reasonable to close our sets of behavioural
properties under such connectives. In particular, we add countable disjunction, count-
able conjunction and negation to our logic1.

We now consider the basic formulas on a type by type basis, starting with the natural
numbers type. Since we have a `case' operator for natural numbers in the language,
it is possible for programs to distinguish any two di�erent natural numbers. As such,
criterium 2 motivates us to distinguish between di�erent numbers. Of course, such a
distinction is also behaviourally meaningful, as statements like 1 ̸= 2 align with our
natural understanding of numbers. So both criteria 1 and 2 motivate us too include a
basic value formula {n} ∈ Form(N) for every n ∈ N. This property checks whether a
numeral expressed in the language is equal to some natural number, with the semantics
of this formula given by:

V |= {n} ⇐⇒ V = n .

By the closure of Form(N) under countable disjunction, every subset of N can be
represented as some value formula.

For the unit type 1, we do not require any basic value formulas. The unit type
has only one value, ∗. The two subsets of this singleton set of values are identi�ed by
the formulas ⊥ (`falsum', given as an empty disjunction), and ⊤ (the truth constant,
given as an empty conjunction). These two formulas exist for any type, being satis�ed
respectively by all terms and by no terms.

For a function type A → C, the main way of observing the behaviour of its terms
is to give it a speci�c argument and check the behaviour of the resulting computation.
Given a computation M of this type, and a value V of type A, the application M V

gives a computation of type C. This motivates us to include, for every value V ∈
Terms(A) and computation formula ϕ ∈ Form(C), a basic value formula (V ↦→ ϕ) ∈
Form(A → C) with the semantics:

M |= (V ↦→ ϕ) ⇐⇒ M V |= ϕ .

1Since there are only countably many terms, adding countable connectives to the logic is equivalent
to adding arbitrary connectives to the logic. See Lemma 3.3.1

3.2. MODALITIES FOR EFFECTS 29

Other natural behavioural properties can be expressed using these basic formulas to-
gether with the in�nitary propositional logic. For example, given ϕ ∈ Form(A) and
ψ ∈ Form(C), we can construct a formula (ϕ ↦→ ψ) with the semantics:

M |= (ϕ ↦→ ψ) ⇐⇒ ∀V ∈Terms(A), V |= ϕ implies M V |= ψ .

This formula can be de�ned in the logic as a conjunction of V → ψ formulas over all
values V ∈ Terms(A) such that V |= ϕ, so

(ϕ ↦→ ψ) :=
⋀︂

{V → ψ | ∀V ∈Terms(A),V |= ϕ} .

In Section 5.4, we shall consider the possibility of changing the basic value formulas in
Form(A → C) to formulas (ϕ ↦→ ψ).

The basic formulas for UC, Σi∈I Ai, A × B, and Πi∈I Ci are relatively straight-
forward interpretations of the behaviour of the terms at such types. In case of UC for
instance, each formula ϕ ∈ Form(C) is lifted to a formula ⟨ϕ⟩ ∈ Form(UC) with the
semantics:

V |= ⟨ϕ⟩ ⇐⇒ force(V) |= ϕ

The behavioural properties of Σi∈I Ai, A × B, and Πi∈I Ci are given by observing
properties of the components of their terms. The precise formulation and semantics of
the basic formulas of these types are given in Section 3.3.

3.2 Modalities for e�ects

The crucial design decision in the logic is the choice of how basic computation formulas
in Form(FA) are formed. Terms of this type return values of type A when converging.
The moment of convergence is observable, and is possibly in�uenced by e�ects. This
lies in stark contrast with other computation types like A → C, whose terms only
evaluate when necessary and the particular moment of the convergence (to a lambda
term) of the evaluation is deemed unobservable. This is according to the call-by-name
interpretation the call-by-push-value language gives the function type.

The only moment when e�ects can be observed is when terms of type FA are evalu-
ated. To interpret the way these e�ects can be observed, in a behaviourally meaningful
way, we require a given set O of modalities depending on the algebraic e�ects contained
in the language. The basic computation formulas in FA have the form o(ϕ), where
o ∈ O is a modality, and ϕ is a value formula from Form(A). Thus a modality `lifts'
properties of values of type A to properties of computations of type FA.

Take for instance nondeterminism as de�ned in Subsection 2.3.3. A computation of
type FA will, after a (possibly in�nite) sequence of binary nondeterministic decisions,
return a value or diverge. One possible modality for this language is the `diamond'
modality ♢, which given a formula ϕ ∈ Form(A) creates a formula ♢(ϕ) ∈ Form(FA),
which describes the possibility of satisfaction of ϕ, with the informal de�nition:

M |= ♢(ϕ) ⇐⇒ M `may ' return a value V such that V |= ϕ .

30 CHAPTER 3. BEHAVIOURAL EQUIVALENCE

The formal semantics of a modality o is given by a single subset JoK ⊆ T (1) =

T (Tct(F1)) = T ({∗}) (here there is a minor abuse of notation, since the second equality
is formally an isomorphism) such that for M : F1, M |= o(⊤) ⇐⇒ |M | ∈ JoK. We call
JoK the denotation of the modality o.

In general, given a tree t ∈ T (X) and some subset D of X, we de�ne:

t[∈D] := t

⎡⎣x ↦→

⎧⎨⎩⟨∗⟩ if x ∈ D

⊥ otherwise

⎤⎦ ∈ T (1).

If t ∈ T (FA) = T (Tct(FA)) and ϕ ∈ Form(A), we write:

t[|= ϕ] := t[∈ {return(V) | V ∈ Terms(A), V |= ϕ}].

Given this, formulas of the form o(ϕ) have the following semantics:

M |= o(ϕ) ⇐⇒ |M |[|= ϕ] ∈ JoK (3.1)

The particular modalities needed depend on the e�ects under consideration, and
what kind of property should be considered observable. In all cases of e�ects under
consideration, we shall asses the appropriateness of our choice of modalities using three
criteria.

1. The modalities correspond to behaviourally meaningful properties, which repre-
sent behaviour patterns observable externally.

2. The modalities relate to already existing models of e�ects, e.g., the resulting
equivalences satisfy the correct equations, as discussed in Section 3.5.

3. The modalities satisfy properties such that the resulting behavioural equivalence
is compatible. This will be discussed in Subsection 3.3.2.

We now introduce suitable modalities for each of our running examples of e�ects.

3.2.1 Pure computation: Termination

In the case where there are no e�ects present, when the e�ect signature is Σ∅ := ∅
as in Subsection 2.3.1, there is only one fundamental thing we can observe; that the
computation has terminated/converged and returned a value.

We de�ne our set of modalities as O∅ = {↓}, with one termination modality ↓; where
↓ (ϕ) asserts that a computation terminates with a return value V satisfying ϕ. The
following gives both an informal and formal de�nition of the semantics of the formula:

M |=↓(ϕ) ⇔ M returns a value V such that V |= ϕ

⇔ |M | is a leaf ⟨return(V)⟩ such that V |= ϕ .

Note that, in the case of pure functional computation, all trees are leaves; either term
leaves of the form ⟨return(V)⟩, or nontermination leaves labelled ⊥. The denotation
of the termination modality, which determines via (3.1) the formal semantics of ↓ (ϕ)

stated above, is given by:

J↓K = { ⟨∗⟩ } (where ⟨∗⟩ is the tree with a single leaf ∗).

3.2. MODALITIES FOR EFFECTS 31

3.2.2 Error: Detecting the message

When the language is extended with a set of possible error messages Err as in Subsec-
tion 2.3.2, giving the signature Σer := {raisee() | e ∈ Err}, the set of modalities must be
extended in an appropriate manner. We de�ne

Oer = {↓} ∪ {Ee | e ∈ Err},

using the semantics of the termination modality ↓ de�ned above. We have some new
error detecting modalities, each Ee detecting error e:2

M |= Ee(ϕ) ⇔ M raises error message e

⇔ |M | is a node labelled raisee .

Note that the semantics of Eeϕ makes no reference to ϕ. Indeed it would be natural
to consider Ee as a basic computation formula in its own right, which could be done
by introducing a notion of 0-argument modality, and considering Ee as such. In this
thesis, however, we keep the treatment uniform by always considering modalities as
unary operations, with natural 0-argument modalities subsumed, as above, as unary
modalities with a redundant argument.

To determine the right semantics for our new modality, we de�ne its denotation in
the following way:

JEeK = { raisee } .

3.2.3 Nondeterminism: May and Must

As introduced in Subsection 2.3.3, we consider nondeterminism with a single e�ect
operator Σnd := {or(−,−) : α2 → α}, which describes a binary choice made by some
unknown external scheduler.

We de�ne Ond = {♢, □} consisting of two modalities. The ♢-modality determines
what is possible, where we look at which formulas may be satis�ed given some pos-
sible resolution of nondeterministic choices. The □-modality determines what must
happen, where we look at which formulas will always be satis�ed regardless of how the
nondeterministic choices are resolved. We have the following de�nitions:

M |= ♢(ϕ) ⇔ M may return a value V such that V |= ϕ

⇔ |M | has some leaf return(V) such that V |= ϕ ,

M |= □(ϕ) ⇔ M must return a value V such that V |= ϕ

⇔ |M | is �nite and every leaf is of the form return(V) s.t. V |= ϕ .

Including both modalities amounts to a neutral view of nondeterminism, considering
both the best case and the worst case scenario in a single model. Only including the

2Because raisee() is an operation of arity 0, a raisee node in a tree has 0 children.

32 CHAPTER 3. BEHAVIOURAL EQUIVALENCE

♢ modality amounts to angelic nondeterminism, and only including the □ modality
amounts to demonic nondeterminism.

Because of the way the semantic de�nitions interact with termination, divergence
and �niteness, the modalities □ and ♢ are not De Morgan duals. For instance, ϕ :=

¬(♢(¬(ϕ))) expresses the fact that if a computation returns a value V , that value will
satisfy ϕ. However, to satisfy ϕ, termination need not be guaranteed, so the formula
is not equivalent to □(ϕ). The two modalities are not completely unrelated however,
since we do have the following nice equivalence of formulas:

¬(♢(¬(ϕ))) ∧□(⊤) ≡ □(ϕ).

The above semantics are implemented by de�ning the denotations of the modalities
as follows:

J♢K = {t | t has some ∗ leaf}

J□K = {t | t is �nite and every leaf is ∗} .

Each of the three possibilities {♢, □}, {♢}, {□} for O leads to a logic with a di�erent
behavioural equivalence. See Subsection 3.4.1 for examples of such di�erences.

The diamond modality ♢ can be adapted to work for countable nondeterminism,
with e�ect operator c-or(−) : αN → α, in the obvious way. We could also give a natural
de�nition of the box modality for the countable choice operator, where e.g., J□K contains
precisely the trees t ∈ T (1) which are well-founded and contain only leaves labelled ⟨∗⟩.
However, this □ modality violates one of the properties introduced in Subsection 3.3.2,
and can as such not be used in our proof of the forthcoming Compatibility Theorem.

Other behavioural properties of nondeterministic programs can be expressed in
terms of the above modalities with the use of negation. For example:

� M |= ¬(□(¬(ϕ))) holds if, when M is guaranteed to terminate, then it may
produce a value satisfying ϕ.

� M |= ¬(♢(⊤)) i� M must diverge.

� M |= ¬(□(⊤)) i�M may diverge, possibly by an in�nite sequence of or-operators.
For instance, this holds for the term M such that |M | = or(|M |, ⟨∗⟩).

3.2.4 Probability: Expected satisfaction

In the case of probability, as in Subsection 2.3.4, we take as e�ect signature the singleton
Σpr := {pr(−,−) : α2 → α}. We de�ne:

Opr = {P>q | q ∈ Q, 0 ≤ q ≤ 1},

where the modality P>q has the semantics:

M |= P>q(ϕ) ⇔ The probability for M of returning a value V

3.2. MODALITIES FOR EFFECTS 33

such that V |= ϕ is larger than q,

⇔ P(|M |[|= ϕ]) > q .

Here, P : T (1) → [0, 1] calculates the probability that a run through the tree t, starting
at the root, and making independent fair probabilistic choices at each branching node,
ends up with a leaf ⟨∗⟩. Formally, we de�ne for each n ∈ N a function Pn : T (1) → [0, 1]

in the following way:

P0(t) := 0

Pn+1(⟨∗⟩) := 1

Pn+1(⊥) := 0

Pn+1(pr(t, r)) := (Pn(t) +Pn(r))/2 .

These give lower approximations of the true probability of termination, and for each
t ∈ T (1) we de�ne P(t) := sup{Pn | n ∈ N}. The denotation of P>q is:

JP>qK = {t ∈ T (1) | P(t) > q} .

Since our logic is closed under countable disjunction and conjunction, our choice of
only having modalities for rational strict thresholds q is immaterial, as, for any real r
with 0 ≤ r ≤ 1, we can de�ne:

P>r(ϕ) :=
⋁︂

{P>q(ϕ) | q ∈ Q, r < q} .

Similarly, we can de�ne non-strict threshold modalities, for 0 ≤ r ≤ 1, by:

P≥r(ϕ) :=
⋀︂

{P>q(ϕ) | q ∈ Q, q < r} .

Also, we can use negation to de�ne modalities expressing strict and non-strict upper
bounds on probabilities.

P<r(ϕ) := ¬(P≥r(ϕ)), P≤r(ϕ) := ¬(P>r(ϕ)) .

We shall see in Subsection 3.3.3 that, because of continuity issues, it is important that
we include only strict lower-bound modalities in our set Opr of primitive modalities.

3.2.5 Global Store: Initial and �nal state

For global store, as introduced in Subsection 2.3.5, we specify a set of locations Loc,
and have as algebraic e�ect signature Σgs := {lookupl(−), updatel(−;−) | l ∈ Loc}. We
de�ne the set of global states State := NLoc, where for s ∈ State, s(l) = m means the
number m is stored at location l. The modalities are given by the set:

Ogs = {(s↣r) | s, r ∈ State},

where informally:

M |= (s↣r)(ϕ) ⇔ the execution of M , starting in state s, terminates in

34 CHAPTER 3. BEHAVIOURAL EQUIVALENCE

�nal state r, and returns a value V such that V |= ϕ.

We make the above de�nition precise using the e�ect tree of M . We de�ne

exec : T (X)× State → X × State ,

for any set X, to be the least partial function satisfying for each s ∈ State:

exec(⟨x⟩, s) := (x, s) for any x ∈ X

exec(lookupl(n ↦→ tn), s) := exec(ts(l), s)

exec(updatel,n(t), s) := exec(t, s[l := n]) .

where s[l := n] is state s with the modi�cation that location l contains n. Intuitively,
exec(t, s) de�nes the result of �executing� the tree of commands in e�ect tree t starting
in state s, and whenever the execution terminates, produces both the �nal state and the
value produced by the execution. In terms of operational semantics, it can be viewed
as de�ning a `big-step' semantics for e�ect trees (in the signature of global store). We
can now de�ne the semantics of the (s↣r) modality formally:

M |= (s↣r)(ϕ) ⇔ exec(|M |, s) = (V, r) where V |= ϕ .

To obtain the above semantics, we de�ne the denotation of the modalities using exec
function on {∗}:

J(s↣r)K = {t ∈ T (1) | exec(t, s) = (∗, r)} .

The modality implements a notion of total correctness, in the sense thatM |= (s↣r)(ϕ)

holds if and only if M , starting with state s, will terminate with state r producing a
value V such that V |= ϕ. It is also possible to de�ne partial correctness assertions in
the logic. For instance,

M |= ¬(s↣r)(¬(ϕ)) ∧
⋀︂

r′∈State,r′ ̸=r
¬(s↣r′)(⊤)

holds if and only if M , starting with state s, either diverges or terminates with state r
producing a value V such that V |= ϕ.

3.2.6 Input/Output: Traces of communication

Consider the input/output e�ect from Subsection 2.3.6, with the signature given by
Σio := {read(−) : αN → α,write(−;−) : N × α → α}. We de�ne an i/o-trace to be a
�nite word w over the alphabet of characters

{?n | n ∈ N} ∪ {!n | n ∈ N} .

The idea is that such a word represents an input/output sequence, where ?n means
the number n is given in response to an input prompt given by the read operator, and

3.2. MODALITIES FOR EFFECTS 35

!n means that the program outputs n via the writen operator. We de�ne the set of
modalities:

Oio = {⟨w⟩↓, ⟨w⟩... | w an i/o-trace} .

The intuitive semantics of these modalities are as follows:

M |= ⟨w⟩↓ (ϕ) ⇔ w is a complete i/o-trace for the execution of M

resulting in termination with V s.t. V |= ϕ

M |= ⟨w⟩...(ϕ) ⇔ w is an initial i/o-trace for the execution of M .

In order to de�ne the semantics of formulas precisely, we �rst de�ne satisfaction relations
t |= ⟨w⟩↓P and t |= ⟨w⟩..., between t ∈ T (X) and P ⊆ X, by induction on words. (Note
that we are overloading the |= symbol.) In the following, we write ε for the empty word,
and we use textual juxtaposition for concatenation of words.

t |= ⟨ε⟩↓P ⇔ t is a leaf ⟨x⟩ and x ∈ P

t |= ⟨(?n)w⟩↓P ⇔ t = read(t0, t1, . . .) and tn |= ⟨w⟩↓P

t |= ⟨(!n)w⟩↓P ⇔ t = writen(t
′) and t′ |= ⟨w⟩↓P

t |= ⟨ε⟩... ⇔ true

t |= ⟨(?n)w⟩... ⇔ t = read(t0, t1, . . .) and tn |= ⟨w⟩...
t |= ⟨(!n)w⟩... ⇔ t = writen(t

′) and t′ |= ⟨w⟩... .

The formal semantics of modalities is now de�ned as follows:

M |= ⟨w⟩↓ (ϕ) ⇔ |M | |= ⟨w⟩↓ {return(V) | V |= ϕ}

M |= ⟨w⟩...(ϕ) ⇔ |M | |= ⟨w⟩... .

We may write ⟨w⟩i where i is a variable ranging over {↓, ...}. Note that ⟨w⟩..., like Ee
in Example 2.3.2, has a redundant formula argument. Also, note that our modalities
for input/output could naturally be formed by combining the termination modality ↓,
which lifts value formulas to computation formulas, with sequences of atomic modalities
⟨?n⟩ and ⟨!n⟩ acting directly on computation formulas.

The above semantics is formally obtained by de�ning:

J⟨w⟩↓ K = {t | t |= ⟨w⟩↓ {∗} }

J⟨w⟩... K = {t | t |= ⟨w⟩... } .

Input/Output is the only example given in this thesis where trees of unit type are
behaviourally equivalent if and only if they are the same. In particular, for any tree t ∈
T ({∗}) there is some set of modalities A ⊆ O such that

⋂︁
o∈AJoK = {r ∈ T ({∗}) | t ≤ r}.

This distinction between di�erent trees is behaviourally meaningful, since with a correct
series of inputs, any branch in the e�ect tree can be visited and can be observed by
whoever is choosing the inputs.

36 CHAPTER 3. BEHAVIOURAL EQUIVALENCE

3.2.7 Timer: Time taken

As given in Subsection 2.3.7, the signature of the timer e�ect is given by Σti :=

{tickc(−) : α → α | c ∈ Inc}, where Inc ⊆ Q>0 is some set of time increments. For
each rational number q ∈ Q, we consider three types of modalities: C≤q, C≥q and C↑

>q,
where the modalities are informally de�ned as follows:

M |= C≤q(ϕ) ⇔ M terminates with V in at most q-time, where V |= ϕ.

M |= C≥q(ϕ) ⇔ M terminates with V after at least q-time, where V |= ϕ.

M |= C↑
>q(ϕ) ⇔ M delays computation for more than q.

This is formally de�ned using a function clock : N× T (X) → (X ∪ {⊥})×Q where:

clock0(t) = clockn+1(⊥) := (⊥, 0)

clockn+1(⟨x⟩) := (x, 0)

clockn+1(tickc(t)) := (π0(clockn(t)), π1(clockn(t)) + c) .

Here π0 and π1 used for left and right projections respectively. We can de�ne the
denotation as:

JC≤qK := {t ∈ T ({∗}) | ∃n ∈ N, clockn(t) = (∗, p) ∧ p ≤ q}

JC≥qK := {t ∈ T ({∗}) | ∃n ∈ N, clockn(t) = (∗, p) ∧ p ≥ q}

JC↑
>qK := {t ∈ T ({∗}) | ∃n ∈ N, π1(clockn(t)) > q} .

We take three di�erent sets of modalities, corresponding to three di�erent theories for
the timer e�ects.

1. The down-modalities O↓
ti = {C≤q | q ∈ Q≥0}.

2. The up-modalities O↑
ti = {C≥q,C

↑
>q | q ∈ Q≥0}.

3. The combined modalities Oti = O↓
ti ∪ O↑

ti.

We see the down-modalities as the primary way of interpreting this e�ect, since it
looks at the passage of time as a negative thing. Moreover, any diverging computation
takes an in�nite amount of time, and hence tickc(Ω) should be seen as indistinguishable
from Ω. The down-modalities formally implement this sentiment.

Of course, there might be other interpretations of the timer e�ect for which the
other modalities are more natural. E.g. one could see tick1000(Ω) as dispensing a cash
price to the user of the computer, which can be interpreted as a positive event. In such
a case, the up-modalities may be a better interpretation of the e�ect.

3.3. BEHAVIOURAL PREORDERS 37

3.3 Behavioural preorders

We have de�ned all the tools needed to construct our logic of behavioural properties,
and the resulting behavioural equivalence. In this section, we assume that we have
an e�ect signature Σ and a set of modalities O, each with an associated denotation
J−K. We will �rst give a precise formulation of the construction of the formulas, where
Form(E...) gives the set of formulas of type E....

We use ϕ, ψ, . . . for formulas over value types, ϕ, ψ for formulas over computation
types, and ϕ..., ψ..., . . . for formulas over a non-speci�c type E... (i.e. either value or compu-
tation). Figure 3.1 gives the inductive rules for generating these formulas.

(1)
n ∈ N

{n} ∈ Form(N)

(2)
ϕ ∈ Form(C)

⟨ϕ⟩ ∈ Form(UC)
(3)

j ∈ I ϕ ∈ Form(Aj)

(j, ϕ) ∈ Form(Σi∈I Ai)

(4)
ϕ ∈ Form(A)

π0(ϕ) ∈ Form(A×B)
(5)

ϕ ∈ Form(B)

π1(ϕ) ∈ Form(A×B)

(6)
V ∈ Terms(A) ϕ ∈ Form(C)

(V ↦→ ϕ) ∈ Form(A → C)
(7)

o ∈ O ϕ ∈ Form(A)

o(ϕ) ∈ Form(FA)

(8)
ϕ ∈ Form(Cj)

(j ↦→ ϕ) ∈ Form(Πi∈I Ci)
(9)

X ⊆countable Form(E...)⋁︁
X ∈ Form(E...)

(10)
X ⊆countable Form(E...)⋀︁

X ∈ Form(E...)
(11)

ϕ... ∈ Form(E...)

¬(ϕ...) ∈ Form(E...)

Figure 3.1: Formula constructors

Satisfaction of the formulas is given by the following rules:

V |= {n} ⇐⇒ V = n.

V |= ⟨ϕ⟩ ⇐⇒ force(V) |= ϕ.

(i, V) |= (j, ϕ) ⇐⇒ i = j and V |= ϕ.

(V,W) |= π0(ϕ) ⇐⇒ V |= ϕ.

(V,W) |= π1(ϕ) ⇐⇒ W |= ϕ.

M |= (V ↦→ ϕ) ⇐⇒ M V |= ϕ.

M |= o(ϕ) ⇐⇒ |M |[|= ϕ] ∈ JoK.

M |= (j ↦→ ϕ) ⇐⇒ M j |= ϕ.

P... |=
⋁︂
X ⇐⇒ ∃ϕ... ∈ X. P... |= ϕ....

P... |=
⋀︂
X ⇐⇒ ∀ϕ... ∈ X. P... |= ϕ....

P... |= ¬(ϕ...) ⇐⇒ ¬(P... |= ϕ...).

38 CHAPTER 3. BEHAVIOURAL EQUIVALENCE

Note that conjunctions and disjunctions are formed over countable sets of formulas
only. The choice to not include connectives over larger sets is inconsequential, since there
are only countably many terms, any disjunction or conjunctions over a set of formulas
can be reduced to a disjunction or conjunction over a countable set of formulas.

Lemma 3.3.1. For any type E... and any set X ⊆ Form(E...), there are countable subsets

X∨, X∧ ⊆ X such that:

1. P... |=
⋁︁
X∨ ⇐⇒ ∃ϕ... ∈ X. P... |= ϕ....

2. P... |=
⋀︁
X∧ ⇐⇒ ∀ϕ... ∈ X. P... |= ϕ....

Proof. Let f : N → Terms(E...) be an enumeration of all terms, which exists since the
number of terms is countable. We construct sequences of sets Xn

∨ and Xn
∧ inductively,

with X0
∨ = X0

∧ = ∅. For each n ∈ N we do the following:
If there is a ϕ... ∈ X such that f(n) |= ϕ..., then choose such a ϕ... and de�ne Xn+1

∨ =

Xn
∨ ∪ {ϕ...}. If such a ϕ... does not exist, de�ne Xn+1

∨ = Xn
∨. If there is a ϕ... ∈ X such that

f(n) ̸|= ϕ..., then de�ne Xn+1
∧ = Xn

∧ ∪ {ϕ...}, else de�ne Xn+1
∧ = Xn

∧.
The resulting sets X∨ :=

⋃︁
nX

n
∨ and X∧ :=

⋃︁
nX

n
∧ have the desired properties.

A basic formula is a formula which on the top level does not have a conjunction,
disjunction or negation. A ¬-basic formula, is either a basic formula or the negation
of a basic formula. We will distinguish between two di�erent logics, one with and one
without negations:

� All formulas together form the general logic V, where the `V' stands for the fact
that functions are tested by checking for a speci�c Value argument3.

� The formulas without negation symbols ¬ form the positive logic V+. Of course,
the positive logic forms a subset of the general logic.

3.3.1 Logical preorders

We can de�ne the preorders resulting from the logic. For a subset L ⊆ V, also called a
fragment of V, and a type E..., we write Form(E...)L for Form(E...) ∩ L.

De�nition 3.3.2. For any subset (fragment) of the logic L ⊆ V, we de�ne the logical
preorder ⊑L such that:

∀P..., R... : E..., P... ⊑L R... ⇐⇒ (∀ϕ... ∈ Form(E...)L, P... |= ϕ... ⇒ R... |= ϕ...).

Here we use P... : E... as a shorthand for P... ∈ Terms(E...).

The general behavioural preorder ⊑ is the logical preorder ⊑V , whereas the positive

behavioural preorder ⊑+ is the logical preorder ⊑V+ . Because these preorders are

3As opposed to the pure logic F , where `F' stands for Formula, introduced in Section 5.4

3.3. BEHAVIOURAL PREORDERS 39

fundamental, we leave out the subscripts. We write ≡L, ≡ and ≡+ for the equivalence
induced by the preorders ⊑L, ⊑, and ⊑+ respectively:

∀P..., R... : E..., P... ≡L R... ⇐⇒ (∀ϕ... ∈ Form(E...)L, P... |= ϕ... ⇔ R... |= ϕ...).

Note that for any fragment L ⊆ V, we always have that (⊑) ⊆ (⊑L) simply because
fewer properties are tested by L then by V. We study some other general results.

Lemma 3.3.3. For any fragment of the logic L ⊆ V, ⊑L is re�exive and transitive.

Proof. This is a consequence of the re�exivity and transitivity of the logical implication
`⇒'.

Lemma 3.3.4. The general behavioural preorder ⊑ is symmetric, so (⊑) = (≡).

Proof. Assume P... ⊑ R... and R... |= ϕ.... Then if P... ̸|= ϕ..., it holds that P... |= ¬ϕ... and hence
R... |= ¬ϕ... which leads to a contradiction. We conclude that P... |= ϕ..., which is for all such
ϕ..., so R... ⊑ P....

Henceforth we will use ≡ instead of ⊑, since the two coincide.
The following result can be established from the fact that satisfaction of conjunc-

tions, disjunctions and negations are completely determined by the satisfaction of the
subformulas (the formulas over which the connectives are taken).

Lemma 3.3.5. The preorders ≡ and ⊑+ are completely determined by basic formulas.

For example, we can state the following classi�cations of the preorders:

1. V ⊑+
UC W if and only if ∀ϕ ∈ Form(C)V+ we have V |= ⟨ϕ⟩ ⇒W |= ⟨ϕ⟩.

2. M ≡FA N if and only if ∀o ∈ O and ϕ ∈ Form(A) we have M |= o(ϕ) ⇔
N |= o(ϕ).

Similar properties hold at the other types.

Proof. Let E... be some type, and assume that for two terms P..., R... : E..., and for any
basic formula ϕ..., P... |= ϕ... ⇔ R... |= ϕ.... We prove by induction on ψ... ∈ Form(E...) that
P... |= ψ... ⇔ R... |= ψ.... The induction base is the case where ψ... is a basic formula. Hence
the desired statements holds by assumption.

Now for the induction step. Assume by induction hypothesis that for a countable
subset X ⊆ Form(E...), it holds that for any ϕ... ∈ X,P... |= ϕ... ⇔ R... |= ϕ.... Then P... |=

⋁︁
X ⇔

∃ϕ... ∈ X,P... |= ϕ... ⇔ ∃ϕ... ∈ X,R... |= ϕ... ⇔ R... |=
⋁︁
X. Similarly, P... |=

⋀︁
X ⇔ ∀ϕ... ∈ X,P... |=

ϕ... ⇔ ∀ϕ... ∈ X,R... |= ϕ... ⇔ R... |=
⋀︁
X. Lastly, assume as induction hypothesis that the

statement holds for ϕ..., then since P... |= ϕ... ⇔ R... |= ϕ..., it holds that P... |= ¬ϕ... ⇔ R... |= ¬ϕ....
This �nishes the induction. The proof for the positive behavioural preorder ⊑+ is

similar, and can be obtained by replacing all instances of `⇔' in the above proof by `⇒',
and removing the case of negation.

40 CHAPTER 3. BEHAVIOURAL EQUIVALENCE

Lemma 3.3.6. Suppose L is either V or V+. For any term P... there is a formula χP...
such that R... |= χP... ⇐⇒ P... ⊑L R.... Moreover, χP... can be expressed as a conjunction over

¬-basic formulas in case of V (and over basic formulas in case of V+).

Proof. We prove the statement for L = V, where ⊑L = ≡. For any R... such that
¬(P... ≡ R...), we can �nd by Lemma 3.3.5 a basic formula ϕ... such that P... |= ϕ... ̸⇔ R... |= ϕ.... So
we can �nd a ¬-basic formula ψ...¬R... , which is either ϕ... or its negation, such that P... |= ψ...

¬R...

and R... ̸|= ψ...
¬R... . We choose such a formula for each R... for which ¬(P... ⊑L R...), and de�ne

XP... := {ψ...¬R... | ¬(P... ⊑L R...)}. We prove that χP... :=
⋀︁
XP... has the desired properties,

noting that it is a conjunction over ¬-basic formulas. The set XP... is countable, as it is
a subset of the countable set of terms.

If P... ⊑L Q..., then for any ϕ... ∈ XP... , since P... |= ϕ..., it holds that Q... |= ϕ.... Conversely,
suppose Q... |=

⋀︁
XP... , and assume P... ̸⊑L Q.... Then ψ...

¬Q... ∈ XP... and ¬(Q... |= ψ...
¬Q...), which

directly contradicts Q... |=
⋀︁
XP... . We can conclude that P... ⊑L Q..., so P... ⊑L Q... ⇔ Q... |= χP... .

The proof for L = V+ is a simpli�cation of the above proof.

3.3.2 Compatibility

The de�ned formulas only test properties of closed terms (terms with empty context).
To deal with open terms, we will make use of the open extension of our behavioural
equivalence on closed terms.

De�nition 3.3.7. A relationR on terms is well-typed, if it only relates terms of the same
type and context. Given a well-typed relation R on closed terms, the open extension

R◦ of R is the well-typed relation on open terms such that:

x1 : A1, . . . , xn : An ⊢... P...R◦R... : E... ⇐⇒

∀V1 : A1, . . . , Vn : An, P...[V1/x1, . . . , Vn/xn]R R...[V1/x1, . . . , Vn/xn] : E...

We desire the open extension of the behavioural preorders to be compatible, in the
sense of [24, 41, 75]. In other words, the preorders should be precongruences and hence
be preserved under program composition. Compatibility can be formulated using an
operation on well-typed relations of open terms, the compatible re�nement ˆ︁R, whose
rules are given in Figure 3.2. A relation R is compatible if ˆ︁R ⊆ R. Note that the
compatible re�nement ˆ︁R of a well-typed relation is not necessarily compatible.

We now state the main theorem of this chapter, that under su�cient conditions,
which we will de�ne later, the behavioural equivalence and the positive behavioural
preorder are compatible. The proof of this theorem will be concluded at the end of
Chapter 4.

Theorem 3.3.8 (The Compatibility Theorem). If O is a decomposable set of Scott-

open modalities then the open extensions of the full behavioural equivalence ≡ and the

positive behavioural preorder ⊑+ are both compatible.

We work towards de�ning the two properties (decomposability and Scott openness)
mentioned in the theorem.

3.3. BEHAVIOURAL PREORDERS 41

Γ ⊢ ∗ ˆ︁R∗ : 1
C1

Γ ⊢ Z ˆ︁RZ : N
C2

Γ ⊢ V RV ′ : N

Γ ⊢ S(V) ˆ︁R S(V ′) : N
C3

Γ ⊢ V RV ′ : N Γ ⊢ M RM ′ : C Γ, x : N ⊢ N RN ′ : C

Γ ⊢ (case V of {M,S(x) ⇒ N}) ˆ︁R (case V ′ of {M ′,S(x) ⇒ N ′}) : C′C4

Γ, x : A,Γ′ ⊢ x ˆ︁Rx : A
C5

Γ ⊢ V RV ′ : A Γ, x : A ⊢ M RM ′ : C

Γ ⊢ (let x be V.M) ˆ︁R (let x be V ′.M ′) : C
C6

Γ ⊢ V RV ′ : A

Γ ⊢ return(V) ˆ︁R return(V ′) : FA
C7

Γ ⊢ M RM ′ : FA Γ, x : A ⊢ N RN ′ : C

Γ ⊢ (M to x.N) ˆ︁R (M ′ to x.N ′) : C
C8

Γ ⊢ M RM ′ : C

Γ ⊢ thunk(M) ˆ︁R thunk(M ′) : UC
C9

Γ ⊢ V RV ′ : UC

Γ ⊢ force(V) ˆ︁R force(V ′) : C
C10

Γ, x : A ⊢ M RM ′ : C

Γ ⊢ (λx.M) ˆ︁R (λx.M ′) : A → C
C11

Γ ⊢ V RV ′ : A Γ ⊢ M RM ′ : A → C

Γ ⊢ (M V) ˆ︁R (M ′ V ′) : C
C12

Γ ⊢ V RV ′ : Aj j ∈ I

Γ ⊢ (j, V) ˆ︁R (j, V ′) : Σi∈I Ai

C13

Γ ⊢ V RV ′ : Σi∈I Ai Γ, x : Aj ⊢ M j RM ′
j : C for each j ∈ I

Γ ⊢ (pm V as {. . . , (i.x).M i, . . . }) ˆ︁R (pm V ′ as {. . . , (i.x).M ′
i, . . . }) : C

C14

Γ ⊢ V RV ′ : A Γ ⊢W RW ′ : A′

Γ ⊢ (V,W) ˆ︁R (V ′,W ′) : A×A′
C15

Γ ⊢ V RV ′ : A×A′ Γ, x : A, y : A′ ⊢ M RM ′ : C

Γ ⊢ pm V as (x, y).M ˆ︁R pm V ′ as (x, y).M : C
C16

Γ ⊢ M i RM ′
i : Ci for each i ∈ I

Γ ⊢ ⟨M i | i ∈ I⟩ ˆ︁R⟨M ′
i | i ∈ I⟩ : Πi∈I Ci

C17
Γ ⊢ M RM ′ : Πi∈I Ci j ∈ I

Γ ⊢ (M j) ˆ︁R (M ′ j) : Cj

C18

Γ ⊢ M RM ′ : UC → C

Γ ⊢ fix(M) ˆ︁R fix(M ′) : C
C19

Γ ⊢ Vi RV ′
i : N for each 1 ≤ i ≤ n Γ ⊢ M j RM ′

j : C for each 1 ≤ j ≤ m

Γ ⊢ op(V1, . . . , Vn,M1, . . . ,Mm) ˆ︁R op(V ′
1 , . . . , V

′
n,M

′
1, . . . ,M

′
m) : C

C20

Γ ⊢ Vi RV ′
i : N for each 1 ≤ i ≤ n Γ, x : N ⊢ M RM ′ : N → C

Γ ⊢ op(V1, . . . , Vn, x ↦→M) ˆ︁R op(V ′
1 , . . . , V

′
n, x ↦→M ′) : C

C21

Figure 3.2: Compatible re�nement.

42 CHAPTER 3. BEHAVIOURAL EQUIVALENCE

De�nition 3.3.9. We say that o ∈ O is upwards closed if JoK is an upper-closed subset
of T1; i.e., if t ∈ JoK and t ≤ t′ implies t′ ∈ JoK.

De�nition 3.3.10. We say that o ∈ O is Scott-open if JoK is an open subset in the
Scott topology on T (1); i.e., JoK is upwards closed and, whenever t1 ≤ t2 ≤ . . . is an
ascending chain in T1 with supremum

⨆︁
i ti ∈ JoK, we have tn ∈ JoK for some n.

The main use for Scott openness is expressed by the following lemma.

Lemma 3.3.11. If o ∈ O is a Scott-open modality, then M |= o(ϕ) holds if and only if

there is an n ∈ N such that |M |n[|= ϕ] ∈ JoK.

Proof. This is a simple consequence of the fact that
⨆︁
n(|M |n[|= ϕ]) = |M |[|= ϕ].

We will show in Subsection 3.3.3 that all the modalities given for the examples are
Scott-open. This is because for any tree t ∈ JoK there is a �nite subtree t′ ≤ t such that
t′ ∈ JoK. E.g., if t ∈ J♢K, then t has a leaf labelled ⟨∗⟩, and there is a �nite subtree t′ of
t which contains that leaf as well, hence t′ ∈ J♢K.

An example of a modality which is not Scott-open is the nondeterministic must
modality □ as de�ned for countable nondeterministic choice in Subsection 3.2.3. In
a �nite tree, any node of countable nondeterministic choice will have in�nitely many
diverging ⊥-leaves as children. As such, guaranteed termination can not be checked at
a �nite level. This is the reason why we only consider binary nondeterministic choice.

A potential open question to investigate in the future may be to check whether the
theory established in this thesis, for instance Theorem 3.3.8, still applies to modalities
that are not Scott open. Such a result would be applicable to countable nondeterminism.

Though Scott openness will be required in the main inductive proof of the Compat-
ibility Theorem (see Lemma 4.3.2), it is not a necessary condition in a lot of auxiliary
proofs. In fact, a much weaker version of upwards closure seems su�cient for most
results, for instance for the Coincidence Theorem (Theorem 4.2.7).

De�nition 3.3.12. A modality o ∈ O is leaf-upwards closed if for any t ∈ JoK and
r ∈ T (1), if t ≤ r ≤ t[⊥ ↦→ ∗] (equivalently, r can be obtained from t by replacing a
choice of ⊥-leaves with ∗-leaves), then r ∈ JoK.

Decomposability

We now focus on the much more technical notion of decomposability. The main purpose
of the decomposability property is to enable us to prove that the logical preorder is
preserved over the to constructor (cf. case 4 in the proof of Lemma 4.4.18). Semantically,
the sequencing of programs by the to constructor is implemented using the monad
multiplication map µ : TTX → TX de�ned in Chapter 2. As such, we formulate
decomposability as a preservation property of µ. It turns out to be su�cient to formulate
decomposability as a property of µ only in the case that X is the singleton set {∗}. As
such, the formulation involves trees of unit type, that is trees in T1, as well as double

3.3. BEHAVIOURAL PREORDERS 43

trees, that is trees in TT1. The decomposability condition is formulated using preorders
≼ and ⋞ on such trees and double trees respectively.

The relation ≼ is an extension of the positive behavioural preorder ⊑+ at type F1,
from a relation on closed computation terms to a relation ≼ on arbitrary e�ect trees4.
To accommodate this extension, we introduce a new notation; for A ⊆ X and o ∈ O
we write oX(A) for the subset {t ∈ TX | t[∈ A] ∈ JoK} ⊆ TX. We will often write
o(A) instead of oX(A) when X is clear from the context. For instance, if t ∈ TX then
t ∈ o(A) means t ∈ oX(A). One case of particular interest is when A = X = {∗}, for
which we note that o({∗}) = JoK.

As a preliminary to extending ⊑+ to a relation on arbitrary e�ect trees, we extend
the class of positive formulas of type F1, and interpret them over arbitrary T1 com-
putation trees rather than just terms. The class of tree formulas TF (1) is the smallest
class of formulas closed under arbitrary (not necessarily countable) disjunctions

⋁︁
and

conjunctions
⋀︁
, such that for any o ∈ O, o(⊤) ∈ TF (1) and o(⊥) ∈ TF (1)5. For each

ϕ ∈ TF (1), we de�ne its denotation JϕK ⊆ T1 inductively, according to the following
rules:

Jo(⊤)K := o({∗}), Jo(⊥)K := o(∅),
r⋁︂

X
z
:=
⋃︂

{JϕK | ϕ ∈ X},
r⋀︂

X
z
:=
⋂︂

{JϕK | ϕ ∈ X}.

Note that tree formulas subsume positive formulas of type F1. Moreover, for any
closed term M : F1 and formula ϕ ∈ Form(F1) it holds that M |= ϕ⇔ |M | ∈ JϕK.

We use tree formulas to de�ne a behavioural preorder between arbitrary trees of
type 1.

De�nition 3.3.13. We de�ne the preorder ≼ on T1 by: for any two trees t, t′ ∈ T1,

t ≼ t′ : ⇐⇒ ∀ϕ ∈ TF (1), t ∈ JϕK ⇒ t′ ∈ JϕK.

The simple result below characterises the preorder on trees determined by tree for-
mulas.

Proposition 3.3.14. For any t, t′ ∈ T1, the following three statements are equivalent:

1. t ≼ t′.

2. t ≼ t′ ∧ t[∈ ∅] ≼ t′[∈ ∅].

3. ∀o ∈ O, (t ∈ o({∗}) ⇒ t′ ∈ o({∗})) ∧ (t ∈ o(∅) ⇒ t′ ∈ o(∅)).

Proof. The equivalence (1) ⇔ (3) follows from a straightforward induction on the struc-
ture of tree formulas. The equivalence (1) ⇔ (2) is obvious considering the equivalence
(1) ⇔ (3).

4This extension is necessary because there are uncountably many e�ect trees, whereas there are
only countably many terms of type F1.

5We could have alternatively taken the size of disjunctions and conjunctions to be the size of the
set T1, in which case TF (1) forms a set.

44 CHAPTER 3. BEHAVIOURAL EQUIVALENCE

It is now immediate that ≼ is a conservative extension of the positive behavioural
preorder on computation terms of type F1.

Proposition 3.3.15. For computation terms M,N ∈ Terms(F1), it holds that

|M | ≼ |N | if and only if M ⊑+ N .

Proof. The implication |M | ≼ |N | ⇒ M ⊑+ N holds because of the inclusion of
formulas Form(F1) ⊆ TF (1). The implicationM ⊑+ N ⇒ |M | ≼ |N | follows from the
equivalence (3) ⇔ (1) in Proposition 3.3.14, and the fact that o(⊤), o(⊥) ∈ Form(F1).

Corollary 3.3.16. For any ϕ ∈ TF (1), there is a ϕ′ ∈ Form(F1) such that:

∀M ∈ Terms(F1), M |= ϕ′ ⇔ |M | ∈ JϕK.

Proof. Using characteristic formulas from Lemma 3.3.6, we can prove using Proposi-
tion 3.3.15 that ϕ′ :=

⋁︁
{χM | M ∈ Terms(F1), |M | ∈ JϕK} has the right proper-

ties.

In all of the examples of sets of modalities O given in Section 3.2, the preorder ≼
based on O can be characterised in a simpler way, where:

t ≼ t′ ⇐⇒ ∀o ∈ O, t ∈ JoK ⇒ t′ ∈ JoK. (3.2)

This is a consequence of the fact that each of the particular modalities o of the examples
satisfy one of the following two properties:

(i) o(∅) = ∅. The modalities with this property are: ↓,♢,□,P>q, (s↣ s′), ⟨w⟩↓, C≥q,
and C≤q.

(ii) ∀t ∈ T1, t ∈ o({∗}) ⇔ t ∈ o(∅). The modalities with this property are Ee, ⟨w⟩...,
and C↑

>q.

There do however exist sets of Scott open modalities for which the characterisation of
≼ via (3.2) does not hold. For example, for Σ = {raise : α0 → α} and O = {o} where
JoK = {⟨∗⟩, raise}. There we have that raise ̸≼ ⟨∗⟩, since raise ∈ o(∅) and ⟨∗⟩ /∈ o(∅).
However, it does hold that for all o ∈ O, raise ∈ JoK ⇒ ⟨∗⟩ ∈ JoK.

We next de�ne the relation ⋞ on double trees, which is an abstraction of the positive
behavioural preorder on type F (U (F1)).

De�nition 3.3.17. We de�ne the preorder ⋞ on TT1 by: for any two double trees
r, r′ ∈ TT1,

r ⋞ r′ : ⇐⇒ ∀o ∈ O,∀ϕ ∈ TF (1), r ∈ o(JϕK) ⇒ r′ ∈ o(JϕK).

Proposition 3.3.18. For any two terms M,N ∈ Terms(F (U (F1))),

M ⊑+ N ⇐⇒ |M |[V ↦→ |force(V)|] ⋞ |M |[V ↦→ |force(V)|].

3.3. BEHAVIOURAL PREORDERS 45

Proof. For the left to right implication, assume M ⊑+ N and |M |[V ↦→ |force(V)|] ∈
o(JϕK). Take ϕ′ ∈ Form(F1) from Corollary 3.3.16, then o(⟨ϕ′⟩) ∈ Form(F (U (F1)))

and M |= o(⟨ϕ′⟩). So N |= o(⟨ϕ′⟩) and hence |N |[V ↦→ |force(V)|] ∈ o(JϕK). We
conclude that |M |[V ↦→ |force(V)|] ⋞ |N |[V ↦→ |force(V)|].

For the right to left implication, assume |M |[V ↦→ |force(V)|] ⋞ |M |[V ↦→ |force(V)|].
Using Lemma 3.3.5, we know that M ⊑+ N if for any o ∈ O and ϕ ∈ Form(U (F1)),
M |= o(ϕ) ⇒ N |= o(ϕ). Assume M |= o(ϕ). Since the ⟨−⟩ formula constructor
distributes over

⋁︁
and

⋀︁
, and formulas ⟨⊤⟩ and ⟨⊥⟩ are equivalent to ⊤ and ⊥ respec-

tively, we can �nd (by induction on ϕ) a formula ϕ ∈ Form(F1) ⊆ TF (1) such that
ϕ ≡ ⟨ϕ⟩. It follows thatM |= o(⟨ϕ⟩) which leads to |M |[V ↦→ |force(V)|] ∈ o(JϕK), hence
|N |[V ↦→ |force(V)|] ∈ o(JϕK) and N |= o(ϕ). We conclude that M ⊑+ N .

We give some alternative characterisations of ⋞. These use the notion of right-
set, that is; for any relation R ⊆ X × Y and any subset A ⊆ X, we write
(R↑[A]) := {y ∈ Y | ∃x ∈ A, xR y} for the right-set of A under the relation R.

Lemma 3.3.19. If O is a set of leaf-upwards closed modalities, then for all r, r′ ∈ TT1,

the following are equivalent:

1. r ⋞ r′.

2. ∀A ⊆ T1, r[∈A] ≼ r′[∈(≼↑[A])].

3. ∀o ∈ O,∀A ⊆ T1, r ∈ o(A) ⇒ r′ ∈ o(≼↑[A]).

Proof. (1) ⇒ (2). Assume r[∈A] ∈ o({∗}), then since A ⊆ (≼↑[A]) and o is leaf-
upwards closed, r[∈(≼↑[A])] ∈ o({∗}), which means r ∈ o(≼↑[A]). Let ϕA :=⋁︁
t∈A((

⋀︁
o∈O,t∈o({∗}) o(⊤)) ∧ (

⋀︁
o∈O,t∈o(∅) o(⊥))) ∈ TF (1), then JϕAK = (≼↑[A]) as ϕA

perfectly replicates the condition of membership of (≼↑[A]). So by (1) it holds that
r′ ∈ o(≼↑[A]), hence r′[∈(≼↑[A])] ∈ o({∗}). If r[∈A] ∈ o(∅), then r ∈ o(∅) hence r′ ∈ o(∅)
(since (

⋁︁
∅) ∈ TF (1) and J

⋁︁
∅K = ∅), so r′[∈(≼↑[A])] ∈ o(∅). With Proposition 3.3.14,

we conclude that r[∈A] ≼ r′[∈(≼↑[A])].
(2) ⇒ (3). Since r[∈A] ≼ r′[∈(≼↑[A])], then for any o ∈ O it holds that

r[∈A] ∈ o({∗}) ⇒ r′[∈(≼↑[A])] ∈ o({∗}), which is identical to the statement r ∈ o(A) ⇒
r′ ∈ o(≼↑[A]).

(3) ⇒ (1). If r ∈ o(JϕK) with ϕ ∈ TF (1), then by (3) it holds that r′ ∈ o(≼↑[JϕK]).
By the de�nition of ≼ it holds that (≼↑[JϕK]) ⊆ JϕK, and since ≼ is re�exive JϕK ⊆
(≼↑[JϕK]). Hence (≼↑[JϕK]) = JϕK and we conclude that r′ ∈ o(JϕK).

We can now �nally de�ne the promised notion of decomposability.

De�nition 3.3.20 (Decomposability). We say that O is decomposable if, for all double
trees r, r′ ∈ TT1, r ⋞ r′ implies µr ≼ µr′.

As an immediate consequence of Propositions 3.3.15 and 3.3.18, we can see that
decomposability implies the preservation of ⊑+ over the to constructor for sequencing
over type F (U (F1)):

46 CHAPTER 3. BEHAVIOURAL EQUIVALENCE

Lemma 3.3.21. If O is decomposable, then for any two closed terms M,N ∈
Terms(F (U (F1))),

M ⊑+ N =⇒ M to x. force(x) ⊑+ N to x. force(x).

Proof. Use that |M to x. force(x)| = µ(|M |[V ↦→ |force(V)|]) from Corollary 2.2.10.

The two lemmas below provide di�erent characterisations of decomposability, which
hold if all modalities are upwards closed. The �rst provides a reformulation that is
immediate in the case of our examples, where the statement t ≼ t′ can be simpli�ed via
(3.2). The general case, however, requires a rather technical proof.

Lemma 3.3.22. A set of leaf-upwards closed modalities O is decomposable if and only

if for all r, r′ ∈ TT1, if r ⋞ r′, then ∀o ∈ O, µr ∈ o({∗}) ⇒ µr′ ∈ o({∗}).

Proof. (⇒) The result follows by observing that µr ≼ µr′ implies ∀o ∈ O, µr ∈ o({∗}) ⇒
µr′ ∈ o({∗}).

(⇐) Assume:

(I) ∀r, r′ ∈ TT1, r ⋞ r′ =⇒ ∀o ∈ O, µr ∈ o({∗}) ⇒ µr′ ∈ o({∗}).

Take some r, r′ ∈ TT1, and suppose that r ⋞ r′, which with Lemma 3.3.19 means:

(II) ∀o ∈ O, A ⊆ T1, r ∈ o(A) ⇒ r′ ∈ o(≼↑[A]).

We need to prove that µr ≼ µr′. By (I) we derive that ∀o ∈ O, µr ∈ o({∗}) ⇒ µr′ ∈
o({∗}). To prove µr ≼ µr′ we need only prove ∀o ∈ O, µr ∈ o(∅) ⇒ µr′ ∈ o(∅).

Assume µr ∈ o′(∅) for o′ ∈ O, then µ(r[t ↦→ t[∈∅]]) = (µr)[∈∅] ∈ o′({∗}). We prove
that r[t ↦→ t[∈∅]] ⋞ r′[t′ ↦→ t′[∈∅]] using equivalent notion (3) from Lemma 3.3.19.
Suppose for some o ∈ O and A ⊆ T1, it holds that r[t ↦→ t[∈∅]] ∈ o(A). Let B := {t ∈
T1 | t[∈∅] ∈ A}, then r ∈ o(B). By (II) it holds that r′ ∈ o(≼↑[B]).

For t′ ∈ (≼↑[B]), there is a t ∈ B such that t ≼ t′. Since t ∈ B, t[∈∅] ∈ A and
hence t′[∈∅] ∈ (≼↑[A]). So (≼↑[B]) ⊆ {t′ ∈ T1 | t′[∈∅] ∈ (≼↑[A])}, and we can use
leaf-upwards closure of o′ to derive r′[t′ ↦→ t′[∈∅]] ∈ o(≼↑[A]). Hence by Lemma 3.3.19,
r[t ↦→ t[∈∅]] ⋞ r′[t′ ↦→ t′[∈∅]].

We can apply (I) to derive µ(r[t ↦→ t[∈∅]]) ≼ µ(r′[t′ ↦→ t′[∈∅]]). So since
µ(r[t ↦→ t[∈∅]]) = (µr)[∈∅] ∈ o′({∗}), it holds that and µ(r′[t′ ↦→ t′[∈∅]]) ∈ o′({∗}) and
hence µr ∈ o′(∅). We conclude that µr ≼ µr′, so we are �nished.

The second formulation of decomposability shows that it is equivalent to being able to
`decompose' statements of the form µr ∈ o({∗}) into a collection of modal properties of
the double tree r.

Proposition 3.3.23. A set of leaf-upwards closed modalities O is decomposable if and

only if for any r ∈ TT1 and o ∈ O such that µr ∈ o({∗}), there is a collection of pairs

{(oi, ϕi)}i∈I , with each oi ∈ O and ϕi ∈ TF (1), satisfying the following two properties:

1. ∀i ∈ I, r ∈ oi(JϕiK).

3.3. BEHAVIOURAL PREORDERS 47

2. ∀r′ ∈ TT1, (∀i ∈ I, r′ ∈ oi(JϕiK)) ⇒ µr′ ∈ o({∗}).

Proof. We use the equivalent statement for decomposability established in
Lemma 3.3.22.

(⇒) Assume decomposability, and that for some r ∈ TT1 and o ∈ O, it holds that
µr ∈ o({∗}). Take as set of pairs the following set: {(o′, ϕ′) | o′ ∈ O, ϕ′ ∈ TF (1), r ∈
o′(Jϕ′K)}. This collection by de�nition satis�es condition (1). For any r′ ∈ TT1, if
r′ ∈ o′(Jϕ′K) for any pair in the collection, then r ⋞ r′. Hence by decomposability it
holds that ∀o′′ ∈ O, µr ∈ o′′({∗}) ⇒ µr′ ∈ o′′({∗}), so in particular r′ ∈ o({∗}), and thus
condition (2) holds.

(⇐) Assume the statement given in the lemma, we need to prove decomposability.
For some r, r′ ∈ TT1, suppose that r ⋞ r′. Now let o ∈ O such that µr ∈ o({∗}), then
there is a collection of pairs {(oi, ϕi)}i∈I satisfying the properties given above. So by
property (1), ∀i ∈ I, r ∈ oi(JϕiK), and since r ⋞ r′ it holds that r′ ∈ oi(JϕiK). By
property (2) we conclude that µr′ ∈ o({∗}) which is what we needed to prove.

The following result is a direct consequence of the above proposition.

Corollary 3.3.24. If O and O′ are both decomposable sets of Scott open modalities for

the same signature Σ, then O ∪O′ is a decomposable set of Scott open modalities.

The following stronger notion of decomposability simpli�es the property given in
Proposition 3.3.23. Our running examples turn out to all satisfy this stronger property,
as we shall verify below.

De�nition 3.3.25 (Strong decomposability). We say thatO is strongly decomposable if,
for every r ∈ TT1 and o ∈ O for which µr ∈ o({∗}), there exists a collection {(oi, o′i)}i∈I
of pairs of modalities such that:

1. ∀i ∈ I, r ∈ oi(o
′
i({∗})) ; and

2. For every r′ ∈ TT1, if for all i ∈ I, r′ ∈ oi(o
′
i({∗})) then µr′ ∈ o({∗}) .

Proposition 3.3.26. If O is a strongly decomposable set of leaf-upwards closed modal-

ities, then O is decomposable.

Proof. Using Proposition 3.3.23, this result is a simple consequence of the fact that for
any oi ∈ O, oi(⊤) ∈ TF (1) and Joi(⊤)K = oi({∗}).

The converse statement is not always true, even if we assume Scott openness.

Lemma 3.3.27. There is a decomposable set of Scott open modalities (moreover satis-

fying property 3.2) which is not strongly decomposable.

Proof. Take the following decomposable set of Scott open modalities; O := {↓,□′} for
the signature Σ := {or(−,−) : α×α→ α}. Here, J↓K := {⟨∗⟩} (termination without any
nondeterministic choice) and J□′K := J□K−{⟨∗⟩} (MUST termination with at least one

48 CHAPTER 3. BEHAVIOURAL EQUIVALENCE

nondeterministic choice). These two modalities are obviously Scott open. For r ∈ TT1,
it holds that:

µr ∈ J↓K ⇐⇒ r ∈↓(↓({∗})).
µr ∈ J□′K ⇐⇒ r ∈↓(□′({∗})) ∨ r ∈ □′(□′{∗}∨ ↓({∗})).

Since ↓ (⊤) and □′(⊤)∨ ↓ (⊤) are both tree formulas, we can use Proposition 3.3.23 to
derive that O is decomposable.

However, consider the following tree; r := or(⟨⟨∗⟩⟩, ⟨or(⟨∗⟩, ⟨∗⟩)⟩) ∈ TT1. This tree
has the property that µr = or(⟨∗⟩, or(⟨∗⟩, ⟨∗⟩)) ∈ J□′K. However, ⟨∗⟩ and or(⟨∗⟩, ⟨∗⟩)
do not have a modality they satisfy in common. As such, there is no pair oi, o′i ∈ O
such that r ∈ oi(o

′
i({∗})), so any collection of pairs satisfying property (1) of strong

decomposability must be empty. But then, for property (2) to be satis�ed, it must hold
that ∀r′ ∈ TT1, µr′ ∈ J□′K, which is obviously not true. So we cannot �nd a collection
of pairs of modalities satisfying both properties, and we conclude that O is not strongly
decomposable.

3.3.3 The examples have the correct properties

In this subsection, we prove that the sets of modalities for the examples of Section 3.2
satisfy the Scott openness and decomposability property. As such, the Compatibility
Theorem, Theorem 3.3.8, holds for those sets of modalities.

In the examples, it is straightforward to observe that the modalities are upwards
closed, so the proofs of this are left out. Decomposability will be proven by proving
the strong decomposability property, which will take the following form. Given t ∈
T (T (1)), the observation µt ∈ JoK will be expressed as an equivalent expression using
observations of the form t ∈ o′(o′′({∗})). As such, if ∀o′, o′′, t ∈ o′(o′′({∗})) =⇒ t′ ∈
o′(o′′({∗})), then µt ∈ JoK =⇒ µt′ ∈ Jo′K, and strong decomposability is proven.

Pure computation: (Subsection 3.2.1)
Here Σ∅ = ∅, and the modalities are O∅ = {↓}. All trees TΣ∅(1) are �nite, so Scott
openness holds. O∅ is strongly decomposable, since for any t ∈ TΣ∅(TΣ∅(1)),

µt ∈ J↓K ⇐⇒ t ∈↓(↓({∗})).

This means t terminates, and returns x which terminates with ∗.

Error: (Subsection 3.2.2)
Here Σer := {raisee() | e ∈ Err}, and the modalities are Oer = {↓} ∪ {Ee | e ∈ Err}.
Here too Scott openness holds because all trees of TΣer(1) are �nite. Oer is strongly
decomposable, as we can observe that for any t ∈ TΣer(TΣer(1)) it holds that:

µt ∈ J↓K ⇐⇒ t ∈↓(↓({∗})).

This means r returns a tree t which returns ∗.

µt ∈ JEeK ⇐⇒ t ∈ Ee(Ee({∗})) ∨ t ∈↓(Ee({∗})).

This means r raises an error immediately, or returns a tree that raises an error.

3.3. BEHAVIOURAL PREORDERS 49

Nondeterminism: (Subsection 3.2.3)
Here Σnd := {or(−,−) : α × α → α} and Ond = {♢, □}. Any element of J□K is �nite,
so it is Scott open. If t ∈ J♢K, then t has a ⟨∗⟩-leaf, and there is a �nite subtree t′ ≤ t

containing that leaf. Hence t′ ∈ J♢K, since it has a ⟨∗⟩-leaf, and we can conclude that ♢
is Scott open. Ond is strongly decomposable, since for any t ∈ TΣnd

(TΣnd
(1)) it holds

that:
µt ∈ J♢K ⇐⇒ t ∈ ♢(♢({∗})).

This means t may return a tree, which may return ∗.

µt ∈ J□K ⇐⇒ t ∈ □(□({∗})).

This means t is �nite and must return a �nite tree, which must return ∗.

Probability: (Subsection 3.2.4)
Here Σpr = {pr(−,−) : α×α→ α} and modalities are Opr = {P>q | q ∈ Q, 0 ≤ q < 1}.
If t ∈ JP>qK, then

⨆︁
n Pn(t) = P(t) > q. There must be an n such that Pn(t) > q, since

otherwise P(t) ≤ q. Now Pn(t) only looks at a �nite part of t, the part of t bounded
by tree-depth n. So de�ning tn ≤ t to be the �nite subtree of t bounded at layer n
(replacing nodes at that layer with ⊥ leaves), it hold that Pn(tn) = Pn(t) > q. Hence
tn ∈ JP>qK, showing that the modality is Scott open.

To establish that Opr is strongly decomposable, an intricate argument must be
given. Given t ∈ TΣpr(TΣpr(1)), we de�ne a real-valued function ft : [0, 1] → [0, 1]

where for each rational number q ∈ [0, 1] we de�ne ft(p) := P(t[∈ JP>pK]) =

sup{r ∈ [0, 1] rational | t ∈ P>r(P>p({∗}))}. The set JP>pK gets smaller as p gets bigger,
and as such, the function ft on the rationals is monotone decreasing. We can extend
the de�nition of ft to a function on the reals.

The proof of decomposability relies on the fact that P(µt) =
∫︁ 1
0 ft(p)dp, which can

be observed by studying how the probability of µt is calculated: its the sum of 2−nP(x)
over all leaves x of t where n is the depth of x in t. The integral allows us to express
this sum by using only t ∈ P>r(P>p({∗})) statements. We can conclude that:

µt ∈ JP>qK ⇐⇒
∫︂ 1

0
ft(p)dp > q ⇐⇒ ∃n,

⎛⎝ ∑︂
i=1,2,...,n

ft(i/n)/n

⎞⎠ > q .

Since ft is de�ned using pairs P>p,P>r, this gives us a strong decomposition for
µt ∈ JP>qK, so we can conclude that Opr is strongly decomposable.

Global Store: (Subsection 3.2.5)
Σgs := {lookupl(−) : αN → α, updatel(−;−) : N × α → α | l ∈ Loc} and Ogs =

{(s↣ r) | s, r ∈ State = NLoc}. Each J(s↣ r)K is Scott open, since for each tree
t ∈ J(s↣ r)K, there is a single �nite branch which determines its satisfaction. Ogs is
strongly decomposable, since for any t ∈ TΣgs(TΣgs(1)):

µt ∈ J(s↣r)K ⇐⇒ ∃c ∈ NLoc, t ∈ (s↣c)((c↣r)({∗})).

This means that for some c, exec(t, s) = (x, c) and exec(x, c) = (∗, r).

50 CHAPTER 3. BEHAVIOURAL EQUIVALENCE

Input/Output: (Subsection 3.2.6)
Σio = {read(−) : αN → α,write(−;−) : N× α→ α} and
Oio = {⟨w⟩↓, ⟨w⟩... | w an i/o-trace}. The modalities are Scott open, since only a single
�nite branch, exactly following the speci�ed i/o trace, is checked by the modalities. So
any �nite subtree containing that branch is contained in the modality. Moreover, for
each modality o, there is a �nite tree t such that JoK = {r | t ≤ r}. Oio is strongly
decomposable, since for any t ∈ TΣio

(TΣio
(1)):

µt ∈ J⟨w⟩↓ K ⇐⇒ ∃v, v′, s.t. w = vv′ ∧ t ∈ ⟨v⟩↓ (⟨v′⟩↓ ({∗})).

This means t follows trace v returning x, and x follows trace v′ returning ∗.

µt ∈ J⟨w⟩...K ⇐⇒ t ∈ ⟨w⟩...(⟨w⟩...({∗})) ∨ (∃v, v′, w = vv′ ∧ t ∈ ⟨v⟩↓ (⟨v′⟩...({∗})).

This means either t follows trace w immediately, or it follows v returning a tree which
follows v′.

Timer: (Subsection 3.2.7)
Here Σti = {tickc(−) : α → α | c ∈ Inc} and O↓

ti = {C≤q | q ∈ Q≥0}, O↑
ti = {C≥q,C

↑
>q |

q ∈ Q≥0} and Oti = O↓
ti ∪ O↑

ti. Note that for each q, JC≤qK, JC≥qK and JC↑
>qK are Scott

open, since for any n ∈ N and any tree t ∈ T (1), there is a �nite subtree tn ≤ t such
that clockn(t) = clockn(t

n). All three sets of modalities are strongly decomposable,
since for any t ∈ TΣti

(TΣti
(1)) it holds that:

µt ∈ JC≤qK ⇐⇒ ∃a, b ∈ Q, (a+ b) ≤ q ∧ t ∈ C≤a(C≤b({∗})).

µt ∈ JC≥qK ⇐⇒ ∃a, b ∈ Q, (a+ b) ≥ q ∧ t ∈ C≥a(C≥b({∗})).

µt ∈ JC↑
>qK ⇐⇒ t ∈ C↑

>q(C
↑
>q({∗})) ∨ ∃a, b ∈ Q, ((a+ b) ≥ q ∧ t ∈ C≥a(C

↑
>b({∗})).

Remark: The set of modalities, only containing modalities of the form C↑
>q is not

decomposable, which is why we do not consider it as a valid interpretation of the e�ect.

3.4 Properties of the preorders

In the next two sections we will investigate some properties of the behavioural preorders
⊑+ and ≡. In Section 3.5, we look at the equations and inequations for e�ect trees of
computations of type FA in particular. In this section, we will look at other proper-
ties and classi�cations of the behavioural preorders. Moreover, we will investigate the
di�erent behavioural preorders for the e�ect of nondeterminism as a case study, e.g., to
see how the general and positive behavioural equivalence can di�er.

Firstly we observe that equality of operational semantics implies the general be-
havioural preorder.

Lemma 3.4.1. For any M,N : C, if |M | = |N | then M ≡ N .

3.4. PROPERTIES OF THE PREORDERS 51

Proof. We prove by induction on computation formulas ϕ ∈ Form(C) , that for any
closed terms M,N : C, if |M | = |N | and M |= ϕ, then N |= ϕ.

In the case that ϕ is not a basic formula, the result can be easily proven. E.g., if
ϕ =

⋀︁
X where for any ψ ∈ X, M |= ψ ⇒ N |= ψ, then M |=

⋀︁
X ⇒ N |=

⋀︁
X. If

ϕ = ¬(ψ), then since |N | = |M | it holds that N |= ψ ⇒ M |= ψ M , hence M |= ϕ ⇒
N |= ϕ.

If ϕ := o(ϕ), then M |= ϕ means |M |[|= ϕ] ∈ JoK. So since |N | = |M | we can derive
that |N |[|= ϕ] ∈ JoK, hence N |= o(ϕ).

If ϕ := (V ↦→ ψ), assume as induction hypothesis that the statement holds for ψ.
Suppose M |= (V ↦→ ψ), then M V |= ψ. Now, |M V | = µ(|M |[λx.M ′ ↦→ |M ′[V/x]])

by Corollary 2.2.10, which is equal to µ(|N |[λx.M ′ ↦→ |M ′[V/x]]) = |N V |. So by
induction hypothesis on ψ and |M V | = |N V | we can conclude that N V |= ψ and
hence N |= (V ↦→ ψ).

The case where ϕ := (i ↦→ ψ) can be proven in the same way as the previous case
using Corollary 2.2.10.

This �nishes the induction and we can conclude that M ≡ N .

Corollary 3.4.2. M ≡ force(thunk(M)), and hence (thunk(M) |= ⟨ϕ⟩) ⇔ (M |= ϕ).

Using Lemma 3.3.5, the following classi�cation of the behavioural preorders can be
established by unfolding the de�nitions of the basic formulas:

Lemma 3.4.3. For R either ⊑+ or ≡, it holds that:

1. V RNW ⇐⇒ V =W .

2. V RUCW ⇐⇒ force(V)RC force(W).

3. (j, V)RΣi∈I Ai (k,W) ⇐⇒ (j = k) ∧ V RAj W .

4. (V, V ′)RA×B (W,W ′) ⇐⇒ V RAW ∧ V ′RBW
′.

5. M RA→CN ⇐⇒ ∀V ∈ Terms(A), (M V)RC (N V).

6. M RΠi∈I Ci
N ⇐⇒ ∀j ∈ I, (M j)RCj

(N j).

Proof. We use Lemma 3.3.5.

1. If nRNm, then since n |= {n} it holds that m |= {n} hence n = m.

If V =W , then V RNW by re�exivity (Lemma 3.3.3).

2. V RUCW ⇐⇒ ∀ϕ ∈ Form(C), (V |= ⟨ϕ⟩ ⇒W |= ⟨ϕ⟩) ⇐⇒
∀ϕ ∈ Form(C), (force(V) |= ϕ⇒ force(W) |= ϕ) ⇐⇒
force(V)RC force(W).

52 CHAPTER 3. BEHAVIOURAL EQUIVALENCE

3. If (j, V)RΣi∈I Ai (k,W), then from (j, V) |= (j,⊤) we derive that (k,W) |= (j,⊤),
so k = j. For any ϕ ∈ Form(Aj) we now have V |= ϕ ⇐⇒ (j, V) |= (j, ϕ) =⇒
(j,W) |= (j, ϕ) ⇐⇒ W |= ϕ, so we conclude that V RVj W .

If V RVj W and j = k, then (j, V) |= (l, ϕ) means j = l and V |= ϕ, hence W |= ϕ

so (k,W) |= (l, ϕ). We conclude that (j, V)RΣi∈I Ai (k,W).

4. (V, V ′)RA×B (W,W ′) ⇐⇒
(∀ϕ ∈ Form(A), (V, V ′) |= π0(ϕ) ⇒ (W,W ′) |= π0(ϕ))

∧(∀ϕ ∈ Form(B), (V, V ′) |= π1(ϕ) ⇒ (W,W ′) |= π1(ϕ)),
which is true if and only if V RAW and V ′RBW

′.

5. M RA→CN ⇐⇒
∀V ∈ Terms(A),∀ϕ ∈ Form(C), (M |= (V ↦→ ϕ) ⇒ N |= (V ↦→ ϕ)) ⇐⇒
∀V ∈ Terms(A), ∀ϕ ∈ Form(C), (M V |= ϕ⇒ N V |= ϕ) ⇐⇒
∀V ∈ Terms(A),M V RCN V .

6. M RΠi∈I Ci
N ⇐⇒

∀j ∈ I, ∀ϕ ∈ Form(Ci), (M |= (j ↦→ ϕ) ⇒ N |= (j ↦→ ϕ)) ⇐⇒
∀j ∈ I, ∀ϕ ∈ Form(Cj), (M j |= ϕ⇒ N j |= ϕ) ⇐⇒
∀j ∈ I,M jRCj

N Vj .

Many other properties can be derived from Lemma 3.4.1 and 3.4.3. Here we look at
a selection of three interesting examples, though this list is not comprehensive.

� thunk(M) ≡UC thunk(N) ⇐⇒ M ≡C N .

� x : A ⊢ M ≡◦
C N : C ⇐⇒ λx.M ≡A→C λx.N .

� ⟨M i | i ∈ I⟩ ≡Πi∈I Ci
⟨N i | i ∈ I⟩ ⇐⇒ ∀j ∈ I,M j ≡Cj

N j .

3.4.1 Di�erences between equivalences for nondeterminism

The various logics for nondeterminism give arguably the most diverse collection of logical
equivalences out of all the examples given in this chapter. Not only does the logical
equivalence depend on the chosen modalities, the intersection of the may equivalence
created by the ♢ modality and the must equivalence created by the □ modality does
not yield the neutral equivalence given by the O = {♢,□}. Moreover, including or
excluding negation changes the equivalence for any type of nondeterminism.

For terms of type F1, we have the basic equivalences which hold for both the general
and the positive logic:

return(∗) ≡{♢} or(return(∗),Ω) ̸⊑+
{♢} Ω

return(∗) ̸⊑+
{□} or(return(∗),Ω) ≡{□} Ω

3.4. PROPERTIES OF THE PREORDERS 53

(−) [⟨(−)(⊤)⟩] M := rt(or(Ω,⊛)) N := or(rt(Ω), rt(⊛)) K :=M orN

♢ ♢ T T T

□ □ F F F

♢ □ F T T

□ ♢ T F F

♢ ¬(♢) F T T

□ ¬(□) T F F

♢ ¬(□) T T T

□ ¬(♢) F F F

♢ ♢ ∧ ¬(□) T F T

♢ □ ∨ ¬(♢) F T T

□ ♢ ∧ ¬(□) T F F

□ □ ∨ ¬(♢) F T F

(−) [⟨(−)(⊤)⟩] or(Ω, rt(⊛)) or(Ω, or(rt(Ω), rt(⊛)))

♢ ♢ T T

□ □ F F

♢ □ T T

□ ♢ F F

♢ ¬(♢) F T

□ ¬(□) F F

Table 3.1: Di�erences between the nondeterministic equivalences

For type FUF1, more di�erences between the logics can be observed. Examples of
these di�erences are adapted from [41, 70] using the coincidence between the behavioural
equivalence and applicative bisimilarity proven in the forthcoming Chapter 4.

We study �ve terms and the logical formulas they satisfy in Table 3.1. The logical
formulas are given in a systematic way, in the shape of (−)[⟨(−)(⊤)⟩] with two slots
that can be �lled with logical combinations of modalities.

The �rst column only contains base modalities, since Lemma 3.3.5 establishes that
the behavioural equivalence and positive behavioural preorder only depend on basic
formulas. The second column contain more complex logical expressions of modalities.
In particular, the second column of the �rst table features all possible distinct logical
combinations of modalities: any other expression is equivalent to one featured in the
table. For example, □∧♢ ≡ □. The two columns together give all pairings of expressions

54 CHAPTER 3. BEHAVIOURAL EQUIVALENCE

relevant to our study of the behavioural preorders.
From the �rst table of 3.1, we can deduce that the three termsM , N andK are equal

according to the equivalences ≡+
{♢} and ≡+

{□} as they satisfy precisely the same set of
formulas from the table, and any basic positive formula of type FUF1 is equivalent to
a formula in the table. However, M and N are not equal according to the equivalences
≡+

{♢,□}, ≡{♢} and ≡{□}, while for these equivalences N and K are still equal. The only
equivalence for which all three terms are considered di�erent, is the general behavioural
equivalence ≡{♢,□}, where composite formulas using ∨ or ∧ are necessary to prove the
di�erence between N and K.

The second table in 3.1 gives an example of a di�erence between the relations≡+
{♢,□}

and ≡{♢} ∩ ≡{□}. We can conclude that the following equivalences are all di�erent:

≡+
{♢}, ≡

+
{□}, ≡

+
{♢} ∩ ≡+

{□}, ≡
+
{♢,□}, ≡{♢}, ≡{□}, ≡{♢} ∩ ≡{□}, and ≡{♢,□} .

This subsection does not show all sorts of nondeterminism. One example which
is excluded is the notion of ambiguous nondeterminism as studied in [45, 55], which
considers concurrent evaluations. This type of nondeterminism does not �t into the
framework of this thesis, as it breaks monotonicity, i.e. there are no upwards closed
modalities for specifying the behaviour of ambiguous nondeterministic programs.

3.5 Equational theories

In the study of algebraic e�ects, equational axiomatisations play a major role. These
equational axiomatisations are speci�ed between algebraic terms formed from variables
and e�ect operations. In our setting, we have used modalities as a foundation to derive
semantic preorders on the set of closed terms. Using the modalities, we can derive which
equations are valid for the semantic preorders. This process of going from modalities
to equations is quite natural, whereas extracting modalities from equational axiomati-
sations is not as straightforward.

In this section we explore which equations and inequations are valid with respect
to these behavioural preorders, and we relate them to the standard axiomatisations of
the e�ects. Note that by inequation we do not mean a non-equation, but a notion of
equation which is not necessarily symmetric.

Instead of looking at equations and inequations between algebraic terms, we look at
equations and inequations between e�ect trees whose leaves are variables, as in [49]. As
a basis of exploring validity of equations and inequations with respect to our preorders,
we want to extend the concept of behavioural preorder ⊑+ and ≡ on computation
terms to a preorder on e�ect trees. This has already been done for unit type e�ect trees
in Subsection 3.3.2. Here we generalise this to a preorder on trees of any value type.

De�nition 3.5.1. For any value type A, given t, r ∈ T (A) we say:

� t ⊑+
A r if ∀o ∈ O,∀ϕ ∈ Form(A)V+ , t[|= ϕ] ∈ JoK ⇒ r[|= ϕ] ∈ JoK.

� t ≡A r if ∀o ∈ O,∀ϕ ∈ Form(A)V , t[|= ϕ] ∈ JoK ⇔ r[|= ϕ] ∈ JoK.

3.5. EQUATIONAL THEORIES 55

Note by Lemma 3.3.5 it holds that for any M,N ∈ Terms(FA):

M ⊑+ N ⇐⇒ |M | ⊑+
A |N |, M ≡ N ⇐⇒ |M | ≡A |N |.

We now formalise the notion of equation between e�ect trees. We use the natural
numbers N to enumerate a countable set of variables x, y, z, As such, we see e ∈
T (N) as a variable expression of e�ect operators. An equation or inequation is simply
a pair of such e�ect trees, where for e, e′ ∈ T (N) we can state the equation e = e′ and
we can state the inequation e ≤ e′. We will study what it means for such (in)equations
to be valid for our behavioural preorders.

Given an expression e ∈ T (N) and a sequence f : N → T (X), we denote by
e{f(n)/n}n the substitution of f in e given by µ(e[n ↦→ f(n)]) = µ(f∗(e)). In the
following technical development, we use variables and their associated number inter-
changeably, e.g., we view or(0, 1) as or(x, y).

There are two notions of validity of (in)equations we will study; a natural version
and an abstract version, and we will show that they coincide if O is a decomposable set
of leaf-upwards closed modalities. We �rst de�ne a notion of validity for (in)equations
with respect to substitution of computation terms. This is the most natural notion of
validity with respect to the behavioural preorders, as it directly refers to the extended
notions of behavioural preorders ⊑+ and ≡ de�ned in De�nition 3.5.1.

De�nition 3.5.2. For e, e′ ∈ T (N) and Value Type A:

� e ˆ︁⊑+
Ae

′ if for any M (−) : N → Terms(FA), e{|Mn|/n}n ⊑+
A e′{|Mn|/n}n.

� e ˆ︁≡Ae
′ if for any M (−) : N → Terms(FA), e{|Mn|/n}n ≡A e′{|Mn|/n}n.

Moreover, the general inequation e ˆ︁⊑+
e′ holds i� for all A, e ˆ︁≡Ae

′, and e ˆ︁≡ e′ holds i�
for all A, e ˆ︁≡Ae

′.

Alternatively, we can de�ne validity of (in)equations with respect to the substitution
of unit type trees. This notion is useful, as it only refers to the modalities, and does
not reference the programming language and behavioural logic.

De�nition 3.5.3. For e, e′ ∈ T (N):

� e ˆ︁≤ e′ if ∀f : N → T (1), ∀o ∈ O, e{f(n)/n}n ∈ JoK ⇒ e{f(n)/n}n ∈ JoK.

� e ˆ︁= e′ if e ˆ︁≤ e′ and e′ ˆ︁≤ e.

3.5.1 Relating equation de�nitions

We will see in this subsection, that under su�cient conditions, an (in)equation is valid
with respect to term substitutions (De�nition 3.5.2) if and only if it is valid with respect
to unit type tree substitutions (De�nition 3.5.3). In fact, we show that there are more
notions of validity which are equivalent to the given two.

Lemma 3.5.4. For any e, e′ ∈ T (N), e ˆ︁≤ e′ =⇒ e ˆ︁⊑+
e′, and e ˆ︁= e′ =⇒ e ˆ︁≡ e′.

56 CHAPTER 3. BEHAVIOURAL EQUIVALENCE

Proof. Suppose e ˆ︁≤ e′. Let A be a value type,M (−) : N → Terms(FA), and take o ∈ O
and ϕ ∈ Form(A)V (a general formula) such that e{|Mn|/n}n[|= ϕ] ∈ JoK. Note that
e{|Mn|/n}n[|= ϕ] = e{|Mn|[|= ϕ]/n}n. Since |M (−)|[|= ϕ] gives a map from N to T (1),
we get (since e ˆ︁≤ e′) that e′{|Mn|[|= ϕ]/n}n ∈ JoK. We conclude that e ˆ︁≤ e′ implies:

∀o ∈ O,∀ϕ ∈ Form(A)V , (e
′{|Mn|/n}n[|= ϕ] ∈ JoK ⇒ e′{|Mn|/n}n[|= ϕ] ∈ JoK)

Since V+ ⊆ V, we can derive that e ˆ︁≤ e′ implies e ˆ︁⊑+
Ae

′ for any value type A, so we
conclude that e ˆ︁⊑+

e′.
If e ˆ︁= e′, then e ˆ︁≤ e′ and e′ ˆ︁≤ e, so we can derive with the above result that e ˆ︁≡Ae

′

for any value type A, so e ˆ︁≡ e′.

Lemma 3.5.5. Suppose O is a decomposable set of leaf-upwards closed modalities, and

e, e′ ∈ T (N), then e ˆ︁≤ e′ holds if and only if:

∀f : N → {⊥, ⟨∗⟩}, ∀o ∈ O, e{f(n)/n}n ∈ JoK ⇒ e′{f(n)/n}n ∈ JoK.

Proof. The left to right direction is trivial, since {⊥, ⟨∗⟩} ⊆ T (1).
The other direction makes use of decomposability. Suppose:

(I) ∀f : N → {⊥, ⟨∗⟩} and o ∈ O, e{f(n)/n}n ∈ JoK ⇒ e′{f(n)/n}n ∈ JoK.

Take some substitution of unit trees g : N → T (1) and a modality o ∈ O such that
e{g(n)/n}n ∈ JoK, we want to prove that e′{g(n)/n}n ∈ JoK.

Note that µ(e[n ↦→ g(n)]) = e{g(n)/n}n. We want to apply decomposability on the
two double trees e[n ↦→ g(n)], e′[n ↦→ g(n)] ∈ T (T (1)). Assume D ⊆ T (1) and o′ ∈ O
such that e[n ↦→ g(n)] ∈ o′(D). We de�ne the following function, f : N → {⊥, ⟨∗⟩},
where f(n) = ⟨∗⟩ precisely when g(n) ∈ D. Then e{f(n)/n}n = e[n ↦→ g(n)][∈ D], so
e{f(n)/n}n ∈ Jo′K.

By assumption (I), e′{f(n)/n}n ∈ Jo′K, so e′[n ↦→ g(n)] ∈ o′(D). Since D ⊆ (≼↑[D])

and o′ is leaf-upwards closed, we can derive that e′[n ↦→ g(n)] ∈ o′(≼↑[D]).
By Lemma 3.3.19, we have derived that e[n ↦→ g(n)] ⋞ e′[n ↦→ g(n)]. So by

decomposability, e{g(n)/n}n = µ(e[n ↦→ g(n)]) ≼ µ(e′[n ↦→ g(n)]) = e′{g(n)/n}n,
hence e′{g(n)/n}n ∈ JoK. We can conclude that e ˆ︁≤ e′.

Combining the previous lemma with Lemma 3.5.4 we get:

Proposition 3.5.6. Suppose O is a decomposable set of leaf-upwards closed modalities,

e, e′ ∈ T (N), and A an inhabited value type (there is a term of type A), then the

following 5 statements are equivalent:

1. e ˆ︁≤ e′. 2. e ˆ︁⊑+
e′. 3. e ˆ︁⊑+

Ae
′.

4. ∀f : N → {⊥, ⟨∗⟩}, ∀o ∈ O, e{f(n)/n}n ∈ JoK ⇒ e′{f(n)/n}n ∈ JoK.

5. ∀f : N → {⊥, x}, e{f(n)/n}n ˆ︁≤ e′{f(n)/n}n (where x = 0 ∈ N).

3.5. EQUATIONAL THEORIES 57

Proof. We prove that the �rst four statements are equivalent, and then prove they are
equivalent to the �fth statement.

(1. ⇒ 2.) This case is given by Lemma 3.5.4.

(2. ⇒ 3.) This case holds by de�nition of ˆ︁⊑+
.

(3. ⇒ 4.) Assume that e ˆ︁⊑+
Ae

′ holds. Let f : N → {⊥, ⟨∗⟩} and o ∈ O such that
e{f(n)/n}n ∈ JoK. Let V : A some value term, ϕ := ⊤ ∈ Form(A)V+ and
M (−) : N → Terms(FA) such that Mn := Ω if f(n) = ⊥, else Mn := return(V).

Then e{|Mn|/n}n[|= ϕ] = e{f(n)/n}n ∈ JoK. Since e ˆ︁⊑+
Ae

′, we can conclude that
e′{f(n)/n}n = e′{|Mn|/n}n[|= ϕ] ∈ JoK.

(4. ⇒ 1.) This case holds because of Lemma 3.5.5.

(5. ⇔ 4.) For this case, we use the already established equivalence (1.⇔ 4.) to unfold
statement 5. to: ∀f : N → {⊥, 0}, ∀g : N → {⊥, ⟨∗⟩},∀o ∈ O,
e{g(f(n))/n}n ∈ JoK ⇒ e′{g(f(n))/n}n ∈ JoK,
which is equivalent to statement 4.

With similar proofs, using symmetry, we have the following analogous result.

Proposition 3.5.7. Suppose O is a decomposable set of leaf-upwards closed modali-

ties, e, e′ ∈ T (N), and A an inhabited value type, then the following 5 statements are

equivalent:

1. e ˆ︁= e′. 2. e ˆ︁≡ e′. 3. e ˆ︁≡Ae
′.

4. ∀f : N → {⊥, ∗}, ∀o ∈ O, e{f(n)/n}n ∈ JoK ⇔ e′{f(n)/n}n ∈ JoK.

5. ∀f : N → {⊥, x}, e{f(n)/n}n ˆ︁= e′{f(n)/n}n (where x = 0 ∈ N).

If alternatively, Scott openness holds, we have a slightly weaker result:

Proposition 3.5.8. Suppose all o ∈ O are Scott open, then e ˆ︁⊑+
1 e

′ =⇒ e ˆ︁≤ e′.

Proof. Let f : N → T (1), and for each m ∈ N we write f(n)m for the m-th �nite
approximation of the tree f(n). Suppose that for o ∈ O we have that e{f(n)/n}n ∈ JoK.
Since o is Scott open, there must be an m ∈ N such that e{f(n)m/n}n ∈ JoK (since⨆︁
m e{f(n)m/n}n = e{f(n)/n}n). For each n, f(n)m is �nite, so by Lemma 2.2.11

there is a term Mn such that |Mn| = f(n)m. De�ne M (−) : N → F1 by choosing the

Mn as above, then e{|Mn|/n}n = e{f(n)m/n}n ∈ JoK. Since by assumption e ˆ︁⊑+
1 e

′, it
holds that e′{f(n)m/n}n = e′{|Mn|/n}n ∈ JoK, hence with o being Scott open (hence
upwards closed) this implies that e′{f(n)/n}n ∈ JoK. We conclude that e ˆ︁≤ e′.

58 CHAPTER 3. BEHAVIOURAL EQUIVALENCE

3.5.2 General properties

We show that the properties of admissibility and compositionality from [35] for ˆ︁≤ are
consequences of the properties of the modalities.

De�nition 3.5.9. The preorder ˆ︁≤ is admissible, if for any two sequences of expressions
en, e

′
n ∈ T (N) such that ∀n ∈ N, en ≤ en+1 and e′n ≤ e′n+1,

(∀n ∈ N, en ˆ︁≤ e′n) ⇒ (⊔nen) ˆ︁≤ (⊔ne′n).

Proposition 3.5.10. If all o ∈ O are Scott open, then ˆ︁≤ is admissible.

Proof. A simple derivation:
(⊔nen){f(m)/m}m ∈ JoK ⇒ ∃n, en{f(m)/m}m ∈ JoK ⇒
∃n, e′n{f(m)/m}m ∈ JoK ⇒ (⊔nen){f(m)/m}m ∈ JoK.

De�nition 3.5.11. The preorder ˆ︁≤ is compositional, if for any e ˆ︁≤ e′ and any
E,E′ : N → T (N) such that ∀n ∈ N, E(n) ˆ︁≤E′(n), e{E(n)/n}n ˆ︁≤ e′{E′(n)/n}n.

Proposition 3.5.12. If O is a decomposable set of leaf-upwards closed modalities, thenˆ︁≤ is compositional.

Proof. Let e ˆ︁≤ e′ and E,E′ : N → T (N) such that ∀n ∈ N, E(n) ˆ︁≤E′(n). We use the
equivalence (1.⇔ 4.) from Proposition 3.5.6.

Take g : N → {⊥, ⟨∗⟩} and o ∈ O such that (e{En/n}n){g(m)/m}m =

e{En{g(m)/m}m/n}n ∈ JoK. Note that µ(e[n ↦→ En{g(m)/m}m]) =

e{En{g(m)/m}m/n}n. We prove the requirement of decomposability, using
Lemma 3.3.19, that for any D ⊆ T (1) and o ∈ O we have
e[n ↦→ En{g(m)/m}m] ∈ o(D) =⇒ e[n ↦→ En{g(m)/m}m] ∈ o(≼↑[D]),
to conclude that e′{En{g(m)/m}m/n}n = µ(e′[n ↦→ En{g(m)/m}m]) ∈ JoK.

Take some arbitrary D ⊆ T (1). Note �rst that for any n ∈ N, it holds that
En{g(m)/m}m ≼ E′

n{g(m)/m}m (since En{g(m)/m}m[∈ ∅] = En{g(m)[∈ ∅]/m}m
and (n ↦→ g(n)[∈ ∅]) is a function from N to T (1)). Hence ∀n,En{g(m)/m}m ∈ D ⇒
E′
n{g(m)/m}m ∈ (≼↑[D]).
Let h : N → {⊥, ⟨∗⟩}, where h(n) := ⟨∗⟩ if En{g(m)/m}m ∈ D, otherwise

h(n) := ⊥. So in particular, (I): h(n) = ⟨∗⟩ implies E′
n{g(m)/m}m ∈ (≼↑[D]).

Remember that e ˆ︁≤ e′, so suppose for some o′ ∈ O such that e{h(n)/n}n ∈ o′({∗}),
e[n ↦→ En{f(m)/m}m] ∈ o′(D) holds, so it follows that e′{h(n)/n}n ∈ o′({∗}). Now
by observation (I) and leaf-upwards closure of o′, e′[n ↦→ E′

n{f(m)/m}m] ∈ o′(≼↑[D]).
This proves that e[n ↦→ En{f(m)/m}m] ⋞ e′[n ↦→ E′

n{f(m)/m}m].
By decomposability, µ(e[n ↦→ En{g(m)/m}m]) ≼ µ(e′[n ↦→ E′

n{g(m)/m}m]) and
hence e′{E′

n{g(m)/m}m/n}n ∈ JoK. This is for all g : N → {⊥, ⟨∗⟩} and o ∈ O, so we
can conclude with Proposition 3.5.6 that e{En/n}n ˆ︁≤ e′{E′

n/n}n.

Hence if O is a decomposable set of Scott open modalities, then ˆ︁≤ is admissible, and
both ˆ︁≤ and ˆ︁= are compositional and completely determined by substitutions of ⟨∗⟩
and ⊥.

3.5. EQUATIONAL THEORIES 59

3.5.3 The equations and inequations of the examples

In this subsection, we look at the traditional axiomatic equations and inequations for
e�ects from, e.g., [81, 83], and prove that they are valid for our behavioural equivalence,
according to any notion of validity established above. An inequation which holds for
any e�ect is:

(B) : ⊥ ≤ x

This inequation will hold for ˆ︁≤ whenever all modalities are upwards closed. More
generally, we expect admissability and compositionality to hold. We will have a look
at the other traditional axiomatic equations used for de�ning e�ects. The point is to
establish that these axioms/rules hold for our derived equations ˆ︁= and inequationsˆ︁≤ . Lemmas 3.5.6 and 3.5.7 make this easier to establish, since we only need to check
whether they hold when substituting either ⊥ or ⟨∗⟩.

For error and input/output, there are no particular equations or inequations besides
(B). This re�ects the fact that any two di�erent e�ect trees of unit type are considered
behaviourally di�erent. The other e�ects do have traditional axiomatic equations.

Nondeterminism: Subsections 2.3.3 and 3.2.3.

(N1) : or(x, x) = x.

(N2) : or(x, y) = or(y, x).

(N3) : or(x, or(y, z)) = or(or(x, y), z).

(NA) : x ≤ or(x, y).

(ND) : or(x, y) ≤ x.

where NA and ND are for angelic and demonic nondeterminism respectively.

Probabilistic: Subsections 2.3.4 and 3.2.4.

(P1) : pr(x, x) = x.

(P2) : pr(x, y) = pr(y, x).

(P3) : pr(pr(x, y), pr(z, w)) = pr(pr(x, z), pr(y, w)).

(P4) : pr(pr(pr(. . . , x), x), x) = x.

Where pr(pr(pr(. . . , x), x), x) is the in�nite tree t such that t = pr(t, x).

Global Store: Subsections 2.3.5 and 3.2.5. For all l, r ∈ Loc:

(G1) : lookupl(i ↦→ x) = x.

(G2) : updatel(n; updatel(m;x)) = updatel(m;x).

(G3) : updatel(n; lookupl(i ↦→ xi)) = updatel(n;xn).

60 CHAPTER 3. BEHAVIOURAL EQUIVALENCE

(G4) : lookupl (i ↦→ updatel(i;xi)) = lookupl(i ↦→ xi).

(G5) : updatel(n; updater(m;x)) = updater(m; updatel(n;x)) if l ̸= r.

(G6) : updatel(n; lookupr(i ↦→ xi)) = lookupr(i ↦→ updatel(n;xi)) if l ̸= r.

(G7) : updatel(n;⊥) = ⊥.

(G7) is actually a consequence of the other six rules, rule (B), and compositionality.
This is proven in the case of a single Boolean state in Lemma 3.5.14.

Timer: Subsections 2.3.7 and 3.2.7. We look at some the equations for the down-
interpretation of this e�ect. For all c, d ∈ Inc:

(T1) : tickc(tickd(x)) = tickc+d(x) if (c+ d) ∈ Inc.

(T2) : tickd(x) ≤ tickc(x) if d > c.

(T3) : tickc(⊥) = ⊥

Lemma 3.5.13. For each e�ect, with its e�ect signature Σ and chosen modalities O,

the resulting inequation ˆ︁≤ satis�es the e�ect speci�c inequalities given above in the

following way:

If e ≤ e′ as above, then e ˆ︁≤ e′.

If e = e′ as above, then e ˆ︁= e′.

Proof. We use equivalence (1. ⇔ 4.) from Propositions 3.5.6 and 3.5.7, so we may
assume the variables are instantiated by either ⊥ or ⟨∗⟩. We need to prove that for any
given inequality, if the left satis�es some modality then the right does, and for any given
equality, the left satis�es a modality if and only if the right does. First note that (B)
holds for all e�ect examples since all modalities are upwards closed. Moreover, ˆ︁≤ andˆ︁= are admissable and compositional too, since we have a decomposable set of Scott
open modalities for each e�ect.

Nondeterminism: Note �rst that by the de�nition of the modalities, or(x, y) ∈
J♢K ⇐⇒ x ∈ J♢K ∨ y ∈ J♢K and or(x, y) ∈ J□K ⇐⇒ x ∈ J□K ∧ y ∈ J□K. So (N1), (N2)
and (N3) hold because of the re�exivity, symmetry and transitivity of the connectives
∨ and ∧. (NA) hold since if predicate P holds, then P ∨Q holds. (ND) is true, since if
P ∧Q holds, then P holds.

Probability: Remember that t ∈ JP>qK ⇐⇒ P(t) > q, where P(t) is the
probability of termination. Therefore, an equation holds if for any substitution of
⊥-s and unit leaves, both sides have the same probability of termination. Note that
P(pr(x, y)) = (P(x) + P(y))/2 because of how P is formulated, so it is easy to verify
that (P1), (P2) and (P3) hold. For (P4), observe that that P(pr(pr(pr(. . . , x), x), x)) =
supn Pn(pr(pr(. . . , x), x)) = supn(

∑︁
1≤i<n Pn(x)/2

i) = supn((1− 2−n)Pn(x)) = P(x).
Global Store: A tree t ∈ T (1) satis�es the modality (s ↣ r) if the function

application exec(t, s) results in (∗, r). So e ˆ︁= e′ holds if and only if ∀f : N → {⊥, ⟨∗⟩},
and all s ∈ State, exec(e{f(n)/n}n, s) = exec(e′{f(n)/n}n, s) (if one side is unde�ned,
the other side is too). It can be veri�ed that for each of the given equations, the result of

3.5. EQUATIONAL THEORIES 61

applying the exec function is the same. E.g. (G3): exec(updatel(n; lookupl(i ↦→ xi)), s) =

exec(lookupl(i ↦→ xi), s[l := n]) = exec(xs[l:=n](l), s[l := n]) = exec(updatel(n;xn), s).
Timer: Note that ⟨∗⟩ satis�es any C≤d, ⊥ satis�es no C≤d, and tickc(t) satis�es

C≤d if and only if c ≤ d and t satis�es C≤d−c. Given these facts, the equations can be
easily veri�ed. E.g for (T2), take e ∈ Q:

For x := ⟨∗⟩, tickd(x) ∈ JC≤eK implies d ≤ e, hence c ≤ e and tickc(x) ∈ JC≤eK.
For x := ⊥, tickd(⊥) /∈ JC≤eK.

3.5.4 Problematic e�ect combinations

In this subsection, we give examples of two inequational theories for computationally
interesting e�ect combinations, that cannot be represented by a decomposable set of
upwards closed modalities. This motivates the transition to a quantitative logic formu-
lated in Chapter 6.

Demonic nondeterminism + Global Store

We combine the e�ects of demonic nondeterminism with global store. For simplicity,
we only have one store location, which contains a Boolean value. The problem however
carries over to the more complex case of multiple N-valued stores. The signature Σ is
comprised of four operators:

{or(−,−) : α× α→ α, upT (−) : α→ α, upF(−) : α→ α, look(−,−) : α× α→ α}

upT (M) stores T in the global store, and continues with M . upF(M) stores F in the
global store, and continues with M . look(M,N) continues with M if F is stored in the
global store, else it continues with N .

We assume that we have a decomposable set of upwards closed modalities O, such
that ˆ︁≤ (from De�nition 3.5.3) satis�es the desirable inequations. Firstly, note that

(1) : ⊥ ≤ x

holds because all modalities are upwards closed. This inequation is expected to hold
regardless of that fact.

Secondly, we assume that inequations related to demonic nondeterminism and re-
lated to global store hold for the combination of the two e�ects. As such, from demonic
nondeterminism we want the following inequations:

(2) : or(x, y) ≤ x, or(x, y) ≤ y, (3) : x = or(x, x) .

From global store, adapting the general equations to this single Boolean store location
case, we want the following equations:

(4) : upa(upb(x)) = upb(x), (5) : look(x, x) ˆ︁=x

(6) : look(upF(x), y) = look(x, y), look(x, upT (y)) = look(x, y)

62 CHAPTER 3. BEHAVIOURAL EQUIVALENCE

(7) : upF(look(x, y)) = upF(x), upT (look(x, y)) = upT (y)

where (4) holds for any a, b ∈ {T ,F}. These are not all the inequations one would
expect from the e�ects, but listed here are the ones used in the proofs. We also do not
need to include equations for how the two e�ects interact, the following results are a
consequence of the above inequations and equations only.

Lemma 3.5.14. Suppose ≤′ is compositional and satis�es rules (1),(4),(5) and (6),

then it holds that upT(⊥) =′ ⊥ =′ upF(⊥), where (=′′) = (≤′) ∩ (≥′).

Proof. It holds that ⊥ ≤′ upT (⊥) by rule (1), hence by using compositionality on
the inequation upF(x) ≤′ upF(x) we can derive that upF(⊥) ≤′ upF(upT (⊥)). By
rule (4) it holds that upF(upT (⊥)) = upT (⊥), hence upF(⊥) ≤′ upT (⊥). Similarly,
upT (⊥) ≤′ upF(⊥), so upF(⊥) =′ upT (⊥).

Using compositionality on look(x, y) =′ look(x, y), we can derive that
look(upF(⊥), upF(⊥)) =′ look(upF(⊥), upT (⊥)). By rule (5), look(upF(⊥), upF(⊥)) =

upF(⊥). By rule (6) and (5), it holds that look(upF(⊥), upT (⊥)) =′ look(⊥,⊥) =′ ⊥.
We can conclude that upF(⊥) =′ ⊥, and upT (⊥) =′ ⊥.

This is a perfectly natural thing to expect, and holds in the example where one only
considers the global store e�ect. It re�ects the fact that when a computation diverges,
the (�nal) global state is not observable.

By applying the previous lemma to ˆ︁≤ , we can now derive the following result.

Proposition 3.5.15. Given a decomposable set O of upwards closed modalities, such

that ˆ︁≤ satis�es rules (1) to (7), then it holds that: upT(x) ˆ︁≤x and upF(x) ˆ︁≤x.

Proof. We use equivalence (1.⇔ 5.) from Proposition 3.5.7 and Lemma 3.5.14 to prove
that or(upT (y), z) ˆ︁≤ y. There are only four di�erent substitutions of {⊥, x} for y and
z. In the following table, we check that for each substitution, the inequation holds:

y z or(upT (y), z) y

⊥ ⊥ or(upT (⊥),⊥) ˆ︁≤ (2) ⊥

x ⊥ or(upT (x),⊥) ˆ︁≤ (2) ⊥ ˆ︁≤ (1) x

⊥ x or(upT (⊥), x) ˆ︁≤ (2) upT (⊥) ˆ︁= ⊥

x x or(upT (x), x) ˆ︁≤ (2) x

Table 3.2: Unwanted equation for global store + demonic nondeterminism

The ˆ︁= in the table uses Lemma 3.5.14. We can conclude that or(upT (y), z) ˆ︁≤ y.
Substituting z := upT (y), we get that: upT (y) ˆ︁= (3)or(upT (y), upT (y)) ˆ︁≤ y. Similarly,
we can prove that upF(y) ˆ︁≤ y.

3.5. EQUATIONAL THEORIES 63

Lemma 3.5.16. For any compositional relation ≤′, satisfying rules (1) to (7), and both

upT(x) ≤′ x and upF(x) ≤′ x, then it holds that x =′ ⊥.

Proof. By compositionality, composing upT (x) ≤′ x with upF(x) ≤′ upF(x), we derive
that upF(upT (x)) ≤′ upF(x), so with rule (4), upT (x) ≤′ upF(x). We can derive in a
similar way that upF(x) ≤′ upT (x), hence upT (x) =

′ upF(x).
Using Lemma 3.5.14 and rule (7):

⊥ =′ upF(⊥) =′ upF(look(⊥, x)) =′ upT (look(⊥, x)) =′ upT (x).

Similarly, upF(x) = ⊥, so we can conclude by rule (5) and (6) that ⊥ =′ look(⊥,⊥) =′

look(upF(x), upT (x)) =
′ look(x, x) =′ x.

We can combine all the results together in the following negative result.

Proposition 3.5.17. Given a decomposable set of upwards closed modalities, such that

rules (2) to (7) are valid for ˆ︁≤ , then x ˆ︁= y (hence all expressions are equal).

Proof. Rule (1) follows from the fact that all modalities are upwards closed. So from
the previous two results, we can derive that x ˆ︁=⊥ ˆ︁= y.

Angelic nondeterminism + probability

Another problematic combination of e�ects is the combination of nondeterminism and
probability. The fact that it is di�cult to formulate such a combination of e�ects with
Boolean valued predicates is a common observation. Take for instance [49], where it was
observed that quantitative expectations used for interpreting this e�ect combination
could not be replaced by Boolean probabilities. Here we will look at a similar but
slightly di�erent observation, that this combination cannot be adequately modelled by
a decomposable set of Scott open modalities.

We will look at angelic nondeterminism in particular, with the e�ect signature:
Σ := {or(−,−) : α× α → α, pr(−,−) : α× α → α}. We assume a decomposable set of
upwards closed modalities O, such that we have the following equations and inequations
from the theory of probability and angelic nondeterminism are satis�ed by ˆ︁= and ˆ︁≤ :

(1) : or(x, x) = x (2) : x ≤ or(x, y)

(3) : pr(x, x) = x (4) : y ≤ or(x, y)

(5) : pr(x, y) = pr(y, x)

Note that because all modalities are upwards closed, we have ⊥ ˆ︁≤x. Moreover, ˆ︁≤ is
compositional, so by rule (2); x ˆ︁≤ or(x,⊥) ˆ︁≤ or(x, x) ˆ︁≤ x, and hence

(6) : x ˆ︁= or(x,⊥) ˆ︁= or(⊥, x) .

64 CHAPTER 3. BEHAVIOURAL EQUIVALENCE

Proposition 3.5.18. Suppose O is a decomposable set of upwards closed modalities

such that the above (in)equations hold for ˆ︁≤ , then pr(or(x, y), or(x, z)) ˆ︁≤ or(x, pr(y, z))

(which is very undesirable).

Proof. We use equivalence (1.⇔ 5.):

x y z pr(or(x, y), or(x, z)) or(x, pr(y, z))

⊥ ⊥ ⊥ pr(or(⊥,⊥), or(⊥,⊥)) ˆ︁= (1) pr(⊥,⊥) ˆ︁= (6) or(⊥, pr(⊥,⊥))

w ⊥ ⊥ pr(or(w,⊥), or(w,⊥)) ˆ︁= (3) or(w,⊥) ˆ︁≤ or(w, pr(⊥,⊥))

⊥ w ⊥ pr(or(⊥, w), or(⊥,⊥)) ˆ︁= (6,1) pr(w,⊥) ˆ︁= (6) or(⊥, pr(w,⊥))

w w ⊥ pr(or(w,w), or(w,⊥)) ˆ︁= (1,6) pr(w,w) ˆ︁= (3)w ˆ︁≤ (2) or(w, pr(w,⊥))

⊥ w w pr(or(⊥, w), or(⊥, w)) ˆ︁= (3) or(⊥, w) ˆ︁= (3) or(⊥, pr(w,w))

w w w pr(or(w,w), or(w,w)) ˆ︁= (3) or(w,w) ˆ︁= (1)w ˆ︁≤ (2) or(w, pr(w,w))

Table 3.3: Unwanted equation for probability + angelic nondeterminism

So we conclude that pr(or(x, y), or(x, z)) ˆ︁≤ or(x, pr(y, z)).

The inequation pr(or(x, y), or(x, z)) ˆ︁≤ or(x, pr(y, z)) is undesirable. We give an infor-
mal argument for this claim. Say x is a computation which has a probability of 1/4 of
terminating, y always diverges and z always terminates. Since nondeterministic choices
are made cooperatively, the computation with the highest probability of termination is
chosen. So with the above inequation:

5/8 = (1/4 + 1)/2 = pr(1/4, 1) = pr(or(1/4, 0), or(1/4, 1)) ≤ or(1/4, pr(0, 1)) =

or(1/4, 1/2) = 1/2.
Since informally, 1/2 ≤ 5/8, we can conclude that a computation, whose probability

of termination is 5/8, is equal to a computation whose probability of termination is 1/2,
which contradicts the behaviour of probabilistic programs. This undesirable equality
can be proven more formally:

Proposition 3.5.19. Suppose O is a decomposable set of upwards closed modalities

such that the above (in)equations hold for ˆ︁≤ , then pr(pr(pr(w,⊥),⊥), w) ˆ︁= pr(w,⊥).

Proof. To see this, we substitute x := (1/4)w := pr(pr(w,⊥),⊥) (1/4 probability of
getting w), y := ⊥ and z := w, in pr(or(x, y), or(x, z)) ˆ︁≤ or(x, pr(y, z)). The left-hand
side is bigger then:
pr(or((1/4)w,⊥), or((1/4)w,w)) ˆ︁≥ (2,4)pr((1/4)w,w)

The right hand side is smaller then:
or(pr(pr(w,⊥),⊥), pr(⊥, w)) ˆ︁≤ or(pr(pr(w,w),⊥), pr(⊥, w)) ˆ︁= (3)

or(pr(w,⊥), pr(⊥, w)) ˆ︁= (5)or(pr(w,⊥), pr(w,⊥)) ˆ︁= (1)pr(w,⊥)

So we can conclude that pr((1/4)w,w) ˆ︁≤ pr(w,⊥). By compositionality and ⊥ ˆ︁≤x

we have pr(w,⊥) ˆ︁≤ pr(w, (1/4)w), so with rule (5) we can conclude that:

pr((1/4)w,w) = pr(pr(pr(w,⊥),⊥), w) ˆ︁= pr(w,⊥) .

3.5. EQUATIONAL THEORIES 65

In both examples given in this subsection, we show that the use of a Boolean valued
logic forces undesirable equations and inequations to hold. In Chapter 6, we solve
this problem by considering a generalisation of the logic, using quantitative valued
predicates.

4

Applicative bisimilarity

In the previous chapter, we have established an equivalence relation for terms by in-
ductively de�ning sets of formulas acting as unary predicates. In this chapter, we look
at an alternative approach to equivalence. We will de�ne an equivalence coinductively,
as the largest relation exhibiting suitable properties. This is the notion of bisimilar-

ity [59, 60], where in particular, we will look at applicative bisimilarity in the sense of
Abramsky [2, 12, 15, 41].

In a recent paper [14], it is shown how this approach can be used for establishing
an equivalence for an untyped lambda calculus with algebraic e�ects. There, relators
[46, 102] are used to capture the notion of behaviour of e�ects, which we will here adapt
to lift relations onA to relations on FA. We will show that our behavioural equivalence
is identical to the notion of applicative bisimilarity determined by a relator de�ned using
our modalities. This applicative bisimilarity will be proven to be compatible using a
variation of Howe's method [31]. This approach to Howe's method follows closely the
methods from [14].

4.1 Relators

In this section, we de�ne the operation that lifts relations on terms of value type A,
to relations on terms of computation type FA. This operation, called a relator, is
fundamental for interpreting e�ects in the context of applicative bisimilarity. First, we
introduce some notation for relations.

A relation on sets X and Y is a subset R ⊆ X ×Y , where we write xR y for x ∈ X

and y ∈ Y precisely when (x, y) ∈ R. We de�ne three standard operations on relations:

� Given R ⊆ X × Y , Rop ⊆ Y ×X is the relation such that yRop x ⇐⇒ xR y.

� Given R ⊆ X×Y and S ⊆ Y ×Z, we write RS ⊆ X×Z for relation composition,
where xRS y i� there is a y ∈ Y such that xR y and y S z.

� Given R ⊆ X × Y , and two functions f : Z → X and g : W → Y , we de�ne the
relation (f × g)−1(R) ⊆ Z ×W , where z [(f × g)−1(R)] w ⇐⇒ f(z)R g(w).

67

68 CHAPTER 4. APPLICATIVE BISIMILARITY

Given a set of modalities O for some signature Σ, we de�ne a relator in the sense
of Levy and Thijs [46, 102], which in our setting is an operation that lifts relations on
sets to relations on Σ-trees. Unlike the modalities, which lift unary predicates on terms,
these are designed to lift relations on terms. We de�ne an operator given by a family
of maps OX,Y (−) : P(X × Y) → P(T (X)× T (Y)), indexed by pairs of sets X and Y ,
such that:

t OX,Y (R) r ⇐⇒ ∀D ⊆ X, o ∈ O, (t ∈ o(D) ⇒ r ∈ o(R↑[D])).

Henceforth, we do not write the indices X and Y as subscripts for the O(−) operator.
Remember that (R↑[D]) := {y ∈ Y | ∃x ∈ X,xR y} (introduced just before

Lemma 3.3.19). We require this lifting of relations to satisfy the de�ning properties
of relators from [46].

De�nition 4.1.1. A family of maps Γ(−) : P(X ×Y) → P(T (X)×T (Y)) indexed by
pairs of sets X,Y , is a relator (in the sense of [46]) if the following four properties hold.

1. For any set X, =T (X) ⊆ Γ(=X).

2. ∀R ⊆ X × Y, ∀S ⊆ Y × Z, Γ(R)Γ(S) ⊆ Γ(RS).

3. ∀R,S ⊆ X × Y, R ⊆ S ⇒ Γ(R) ⊆ Γ(S).

4. ∀f : X → Z, g : Y →W,R ⊆ Z ×W, Γ((f × g)−1R) = (T (f)× T (g))−1Γ(R).

As a direct consequence of point 1 and 3, it holds that for any re�exive relation
R ⊆ X ×X, Γ(R) is a re�exive relation.

To prove that O(−) is a relator, we need the condition that all modalities are
leaf-upwards closed, from De�nition 3.3.12.

Lemma 4.1.2. If the modalities from O are leaf-upwards closed, then O(−) is a relator.

Proof. We prove each of the four properties individually.

1. For any set D ⊆ X it holds that D = (=X
↑[D]). So for any t ∈ T (X), if t ∈ o(D)

then t ∈ o(=X
↑[D]). We can conclude that for all t ∈ T (X), tO(=X) t, and hence

=T (X)⊆ O(=X) .

2. For any subset D ⊆ X, it holds that ((RS)↑[D]) = {z ∈ Z | ∃x ∈ D,xRS z} =

{z ∈ Z | ∃x ∈ D,∃y ∈ Y, xR y ∧ y S z} = {z ∈ Z | ∃y ∈ (R↑[D]), y S z} =

(S↑[(R↑[D])]). So with tO(R) rO(S) l and o ∈ O it holds that:

t ∈ o(D) =⇒ r ∈ o(R↑[D]) =⇒ l ∈ o(S↑[(R↑[D])]) = o((RS)↑[D]).

3. If R ⊆ S, then for any set D it holds that (R↑[D]) ⊆ (S↑[D]). Assume tO(R) r

and t ∈ o(D), then r ∈ o(R↑[D]). Hence by leaf-upwards closure of o, it holds
that r ∈ o(S↑[D]).

4.1. RELATORS 69

4. Note that ((f × g)−1R↑
[D]) = g−1(R↑[f(D)]), where f(D) = {f(x) | x ∈ D}.

If tO((f × g)−1R) r then for all D ⊆ X and o ∈ O it holds that t ∈ o(D) ⇒ r ∈
o((f × g)−1R↑

[D]) ⇒ r ∈ o(g−1(R↑[f(D)])). So, given a set E ⊆ Z and a modal-
ity o such that T (f)(t) ∈ o(E), then t ∈ o(f−1(E)) so r ∈ o(g−1(R↑[f(f−1E)])).
Since f(f−1E) ⊆ E, and hence g−1(R↑[f(f−1E)]) ⊆ g−1(R↑[E]), we use leaf-
upwards closure of o to derive that r ∈ o(g−1(R↑[E])). Hence T (g)(r) ∈ o(R↑[E])

and we conclude that T (f)(t)O(R)T (g)(r).

If T (f)(t)O(R)T (g)(r) and t ∈ o(D), then since T (f)(t) ∈ o(f(D)) it holds that
T (g)(r) ∈ o(R↑[f(D)]) so r ∈ o(g−1(R↑[f(D)])). This is for all such D and o, so
we can conclude that t O((f × g)−1R) r.

We will call O(−) the O-relator, since it is a relator speci�ed by the set of modalities
O. The next property together with the previous lemma establishes that O(−) is a
monotone relator in the sense of Thijs [102]1.

Lemma 4.1.3. If the modalities from O are leaf-upwards closed, then for any two

functions f : X → Z, g : Y → W , two trees t ∈ T (X), r ∈ T (Y), and relations

R ⊆ X × Y , S ⊆ Z ×W :

(∀x, y, xR y ⇒ f(x)S g(y)) ∧ tO(R) r =⇒ t[x ↦→ f(x)] O(S) r[y ↦→ g(y)]

Proof. Let R ⊆ X × Y and S ⊆ Z ×W . Assume:

(I) ∀x, y, xR y ⇒ f(x)O(S) g(y).

(II) tO(R) r.

Take o ∈ O and D ⊆ T (Z) such that t[x ↦→ f(x)] ∈ o(D). Take E := f−1(D), then
t ∈ o(E). So by (II), r ∈ o(R↑[E]). For y ∈ (R↑[E]), there is an x ∈ E such that
xR y, hence by (I) it holds that f(x)S g(y). Since x ∈ E implies f(x) ∈ D, it holds
that g(y) ∈ (S↑[D]). It follows that (R↑[E]) ⊆ g−1(S↑[D]). Using leaf-upwards closure,
r ∈ o(g−1(S↑[D])). Since this is for all o ∈ O and D ⊆ T (Z) with t[x ↦→ f(x)] ∈ o(D),
we conclude that t[x ↦→ f(x)]O(S) r[y ↦→ g(y)].

A relation R on Terms(A) can be considered a relation on terminal computation
terms Tct(FA). So we can consider its lifting O(R) to be a relation on T (Tct(FA)).
This relator characterises the equivalence for FA-types.

Lemma 4.1.4. If all modalities of O are leaf-upwards closed, then for ⊑+, it holds that

M ⊑+
FA N ⇐⇒ |M | O(⊑+

A) |N |.

Proof. AssumeM ⊑+
FA N , o ∈ O and D ⊆ Terms(A) such that |M | ∈ o(D). De�ning

χD =
⋁︁
{χV | V ∈ D} (with χV from Lemma 3.3.6) it holds that

W |= χD ⇐⇒ (∃V ∈ D,V ⊑+ W) ⇐⇒ (W ∈ (⊑+↑
[D])).

1[102] de�nes a monotonic relator as a family of relation lifting operations satisfying conditions 1,
2 and 3 from De�nition 4.1.1, and satisfying the condition stated in Lemma 4.1.3.

70 CHAPTER 4. APPLICATIVE BISIMILARITY

By re�exivity of ⊑+ it holds that D ⊆ (⊑+↑
[D]), hence if |M | ∈ o(D) then by

leaf-upwards closure of o we get |M | ∈ o(⊑+↑
[D]). Hence M |= o(χD) from which we

know that N |= o(χD) and we can derive that |N | ∈ o(⊑+↑
[D]). So we conclude that

|M | O(⊑+
A) |N |.

Assume |M | O(⊑+
A) |N | andM |= o(ϕ), so |N | ∈ o(⊑+↑

[ϕ]). If W ∈ (⊑+↑
[ϕ]) then

there is a term V such that V |= ϕ and V ⊑+
A W , hence W |= ϕ. So it holds that

W ∈ (⊑+↑
[ϕ]) =⇒ W |= ϕ. Since o is leaf-upwards closed, we can conclude that

|N |[|= ϕ] ∈ JoK, so by Lemma 3.3.5 it holds that M ⊑+
FA N .

By a similar proof, using the symmetry of ≡ we can prove the following.

Corollary 4.1.5. If all modalities of O are leaf-upwards closed, then for ≡, it holds

that: M ≡FA N ⇐⇒ |M | O(≡A) |N | ∧ |N | O(≡A) |M |.

Proof. By the same proof as in Lemma 4.1.4, M ≡FA N ⇒ |M | O(≡A) |N |. Since
M ≡FA N ⇒ N ≡FA M , it also hold that M ≡FA N ⇒ |N | O(≡A) |M |.

Given |M | O(≡A) |N | ∧ |N | O(≡A) |M |, it holds by the same proof as in
Lemma 4.1.4, that M |= o(ϕ) i� N |= o(ϕ). Hence also, M |= ¬(o(ϕ)) i� N |= ¬(o(ϕ)),
so by Lemma 3.3.5 it follows that M ≡FA N .

4.1.1 Relators of the examples

We study what the relators look like for all of the given examples of e�ects with their
modalities from Section 3.2.

Pure functional computation: (Subsection 3.2.1)
For O∅ = {↓}, the statement tO∅(R) r holds if and only if:

- When t is equal to a leaf labelled x ∈ X, then r is equal to a leaf labelled y ∈ Y

such that xR y.

Error: (Subsection 3.2.2)
For Oer = {↓} ∪ {Ee | e ∈ Err}, the statement t Oer(R) r holds precisely when the
following two statements hold:

- When t is equal to a leaf labelled x ∈ X, then r is equal to a leaf labelled y ∈ Y

such that xR y.

- When t raises an error e ∈ Err, then r raises the same error e.

Nondeterminism: (Subsection 3.2.3)
For Ond = {♢, □}, the statement t Ond(R) r holds precisely when the following two
things are true:

1. If x ∈ X is a leaf of t, then r has a leaf y ∈ Y such that xR y.

2. If t is �nite and has no ⊥-leaves, then:

4.1. RELATORS 71

� r is �nite and has no ⊥-leaves.

� If y ∈ Y is a leaf of r then there is a leaf x ∈ X of t such that xR y.

The relator for angelic nondeterminism {♢}(R) is characterised by rule 1 only, whereas
the relator for demonic nondeterminism {□}(R) is characterised by rule 2.

Probabilistic choice: (Subsection 3.2.4)
For Opr = {P>q | q ∈ Q, 0 ≤ q ≤ 1}, the statement t Opr(R) r holds if and only if:

- For any A ⊆ X, the probability of t terminating with an element of A is less than
or equal to the probability of r terminating with a y such that there is an x ∈ A

with xR y. In other words, ∀A ⊆ X. P(t[∈ A]) ≤ P(r[∈ (R↑[A])]).

Global store: (Subsection 3.2.5)
For Ogs = {(s↣ r) | s, r ∈ State}, the statement t Ogs(R) r holds if:

- For any s ∈ State, if exec(t, s) = (x, s′) then exec(r, s) = (y, s′) for some y such
that xR y.

Input/output: (Subsection 3.2.6)
For Oio = {⟨w⟩↓, ⟨w⟩... | w an i/o-trace}, t Oio(R) r holds precisely when the following
two statements hold:

- If w is an initial i/o-trace for t, then w is an initial i/o-trace for r. Formally,
t |= ⟨w⟩... =⇒ r |= ⟨w⟩....

- If w is a complete i/o trace for t resulting in termination/leaf x ∈ X, the w is
a complete i/o trace for r resulting in termination/leaf y ∈ Y such that xR y.
Formally, t |= ⟨w⟩↓ {x} =⇒ r |= ⟨w⟩↓ (R↑[{x}]).

Timer: (Subsection 3.2.7)
For Oti = {C≤q,C≥q,C

↓
>q | q ∈ Q}, then the statement t Oti(R) r holds if and only if:

1. If t evaluates to x in c-time, then r evaluates to a y within c-time s.t. xR y.

2. If t evaluates to x in c-time, then r evaluates to a y in at least c-time s.t. xR y.

3. If t delays computation for c-time, then r delays computation for at least c-time.

The relator for the down-interpretation of delays O↓
ti(R) is characterised by rule 1 only,

whereas the relator for the up-interpretation of delay O↑
ti(R) is characterised by the

combination of rules 2 and 3.

In [14], relators can be de�ned for monads which carry a continuous Σ-algebra,
which the tree monad TΣ(−) does. The examples of relators in [14] for speci�c e�ects
are, unlike here, de�ned on monads which are speci�cally designed for the e�ect in
question. Those relators can however be compared to the relators given above. Let M

72 CHAPTER 4. APPLICATIVE BISIMILARITY

be a monad which carries a continuous Σ-algebra, then for each set X we can de�ne
a function f : TΣ(X) → MX which respects the monadic and Σ-algebraic structure.
For any relator ΓM on M given as an example in [14], the relator ΓT on TΣ de�ned as,
∀R ⊆ X × Y. t ΓT (R) r ⇐⇒ fX(t) ΓM (R) fY (r), coincides with the relator for the
same e�ects as given above.

Take for instance the example of probability, which in [14] is described using the
subdistribution functor D which sends a setX to the set of subdistributions µ : P(X) →
[0, 1]. The continuous Σ-algebra carried by the monad provides us with a function
f : T (X) → DX, given by f(t)(U) = P(t[∈ U]). So with the relator ΓD from [14] given
by µ ΓD(R) ν :⇔ ∀U ⊆ X.µ(U) ≤ µ(R↑[U]), we see that fX(t) ΓM (R) fY (r) holds
precisely if t Opr(R) r.

We could potentially generalize the notion of modality to work for any monad M
which carries a continuous Σ-algebra. However, in such a generalisation, any such
modality γ on M denoted by a subset JγK ⊆ M({∗}) can be appropriately speci�ed
by a modality oγ on TΣ denoted by JoγK = f−1(JγK) ⊆ TΣ({∗}). As such, there is
no real loss of generality when studying tree monads only. So we choose to capture
behaviour of e�ectful programs with modalities on TΣ. Such modalities implicitly carry
the information of more e�ect-speci�c monads. See [54] for a setting in which more
general classes of `well-behaved' predicate liftings induce relators.

As an illustration of how we do not lose any generality when studying tree monads,
we look at the example of global store, with a monad on the partial global store functor
MX := (State × X)State⊥ . A modality γ on M would be denoted by a set JγK ⊆
M{∗} ≃ (State)State⊥ , so a set of partial endofunctions on State. Generalising the Scott
opennes property, this set JγK will need to open with respect to the domain structure
of M{∗} (where g ≤ h : ⇐⇒ ∀s ∈ State.g(s) ̸= ⊥ ⇒ g(s) = h(s)). The function
f : T (X) → MX given by the continuous Σ-algebra carried by M can be de�ned as
f(t) = λs.swap(exec(t, s)) where swap(x, s′) = (s′, x). Given that JγK is open (hence
upwards closed), the modality oγ given by JoγK = f−1(JγK) can be constructed in terms
of the modalities (s↣s′) de�ned in this thesis:

JoγK = f−1(JγK) =
⋁︂
g∈JγK

⋀︂
s∈State,g(s)̸=⊥

J(s↣g(s))K .

We conclude that the logic de�ned for the state monad M can be expressed within our
logic de�ned for the tree monad.

4.2 Applicative simulations

Following [14], but adapted to our call-by-push-value typed setting, we use relators to
de�ne notions of applicative similarity and bisimilarity.

De�nition 4.2.1. A well-typed relation R on closed terms is an applicative O-

simulation if:

1. V RNW =⇒ V =W .

4.2. APPLICATIVE SIMULATIONS 73

2. thunk(M)RUC thunk(N) =⇒ M RCN .

3. (j, V)RΣi∈I Ai (k,W) =⇒ (j = k) ∧ V RAj W .

4. (V, V ′)RA×B (W,W ′) =⇒ V RAW ∧ V ′RBW
′.

5. M RA→CN =⇒ ∀V ∈ Terms(A), M V RCN V .

6. M RFAN =⇒ |M | O(RA) |N |

7. M RΠi∈I Ci
N =⇒ ∀j ∈ I, M jRCj

N j.

The applicative O-similarity is the largest O-simulation.

Applicative O-similarity exists when all modalities of O are leaf-upwards closed,
since the union over all O-simulations is also an O-simulation. We will prove in Theo-
rem 4.2.7 that the positive behavioural preorder ⊑+ is applicative O-similarity, which
gives an alternative proof for the existence of applicative O-similarity. We de�ne mu-

tual applicative O-similarity as the largest symmetric subset of applicative O-similarity,
which is equal to ≡+ given Theorem 4.2.7. Lastly, we de�ne applicative O-bisimilarity,
which by Theorem 4.2.8 coincides with the full behavioural equivalence.

De�nition 4.2.2. A well-typed relation R on closed terms is an applicative O-

bisimulation if it is a symmetric applicativeO-simulation. The applicative O-bisimilarity

is the largest applicative O-bisimulation.

Sometimes a more general notion of applicative bisimulation is used in the literature.

De�nition 4.2.3. A well-typed relation R on closed terms is a generalised applicative

O-bisimulation if both R and Rop are applicative O-simulations.

If O(−) is a relator, and hence has the relator property that for any relations
R ⊆ S, O(R) ⊆ O(S) , we have the following relatively simple result (see [15] for
similar observations in the context of probabilistic applicative bisimulations):

Lemma 4.2.4. If O(−) is a relator, then applicative O-bisimilarity is the largest gen-

eralised applicative O-bisimulation.

Proof. Note that any applicative O-bisimulation R is a generalised applicative O-
bisimulation, since Rop = R.

Given a generalised applicative O-bisimulation R. Then R ∪Rop is an applicative
O-bisimulation.

This allows for a more general proof technique for establishing that two terms are
related via the bisimilarity.

We will now establish the connection between our positive behavioural preorder and
applicative O-similarity.

Lemma 4.2.5. If all modalities are leaf-upwards closed, then the positive behavioural

preorder ⊑+ is an applicative O-simulation.

74 CHAPTER 4. APPLICATIVE BISIMILARITY

Proof. This is a consequence of Lemma 3.4.3, Corollary 3.4.2, and Lemma 4.1.4.

Lemma 4.2.6. If all modalities are leaf-upwards closed, then any applicative O-

simulation is a subset of ⊑+.

Proof. For R an O-simulation, we prove that R ⊆ (⊑+). Speci�cally, we will prove
that R preserves all formulas ϕ..., meaning: If E... is the type of ϕ..., then for any P..., R... ∈
Terms(E...), if P... RE... R... and P... |= ϕ... then R... |= ϕ....

We prove this by an induction on ϕ..., which can be done because all formulas are
well-founded. Hence, for any formula ϕ..., we need to prove that R preserves ϕ..., given
that it preserves any subformula2 of ϕ.... We perform the induction by case of ϕ....

1. If ϕ... = {n}, then ϕ... ∈ Form(N). Assume V RNW and V |= ϕ..., then by simulation
rule (1), V = W , from which it is apparent that W |= ϕ.... Hence we can conclude
that R preserves ϕ....

2. If ϕ... = ⟨ϕ⟩, then ϕ... ∈ Form(UC). Assume thunk(M)RUC thunk(N) and
thunk(M) |= ⟨ϕ⟩ hence force(thunk(M)) |= ϕ, and by Corollary 3.4.2, M |= ϕ.
By simulation rule (2), M RCN . So by induction hypothesis N |= ϕ and we
conclude (by Corollary 3.4.2) that thunk(N) |= ⟨ϕ⟩.

3. If ϕ... = (j, ψ), then ϕ... ∈ Form(Σi∈I Ai). Assume (a, V)RΣi∈I Ai (b,W) and
(a, V) |= ϕ..., then a = j and V |= ψ. By simulation rule (3), b = a = j

and V RAj W , hence by induction hypothesis W |= ψ. We conclude that
(b,W) |= (j, ψ).

4. If ϕ... = π0(ψ), then ϕ... ∈ Form(A × B). Assume (V, V ′)RA×B (W,W ′) and
(V, V ′) |= ϕ..., hence V |= ψ. By simulation rule (4), V RAW , so by the induction
hypothesis W |= ψ. We conclude that (W,W ′) |= π0(ψ).

The case where ϕ... = π1(ψ) goes similarly.

5. If ϕ... = (V ↦→ ϕ), then ϕ... ∈ Form(A → C). Assume M RA→CN and M |=
ϕ..., hence M V |= ϕ. By simulation rule (5), M V RCN V , so by induction
hypothesis N V |= ϕ. We can conclude that N |= (V ↦→ ϕ).

6. If ϕ... = o(ψ), then ϕ... ∈ Form(FA). Assume M RFAN and M |= o(ψ), hence
|M [|= ψ] ∈ JoK. By simulation rule (6), it holds that |M | O(RA) |N |, so
|N |[∈ (RA

↑[{V | V |= ψ}])] ∈ JoK. By induction hypothesis, R preserves ψ, hence
for each W ∈ (RA

↑[{V | V |= ψ}]), since there is a V such that V |= ψ and
V RAW , it holds that W |= ψ. So (RA

↑[{V | V |= ψ}]) ⊆ {V | V |= ψ}, and
hence by leaf-upwards closure of o it holds that |N |[|= ψ] ∈ JoK. We can conclude
that N |= o(ψ).

7. If ϕ... = (j ↦→ ϕ), then ϕ... ∈ Form(Πi∈I Ci). Assume M RΠi∈I Ci
N and M |= ϕ...,

henceM j |= ϕ. By simulation rule (7),M jRCj
N j, so by induction hypothesis

N j |= ϕ. We can conclude that N |= (j ↦→ ϕ).
2With subformula of ϕ..., we mean any formula used in the construction of ϕ....

4.2. APPLICATIVE SIMULATIONS 75

8. If ϕ... =
⋁︁
i∈I ψ...i, then ϕ... ∈ Form(E...) (it can be of any type). Assume P... RE... R...

and P... |= ϕ..., hence there is an i ∈ I such that P... |= ψ...i. By induction hypothesis,
R... |= ψ...i, so we can conclude that R... |=

⋁︁
i∈I ψ...i.

9. If ϕ... =
⋀︁
i∈I ψ...i, then ϕ... ∈ Form(E...). Assume P... RE... R... and P... |= ϕ..., hence for any

i ∈ I it holds that P... |= ψ...i. By induction hypothesis, R... |= ψ...i for all i ∈ I, so we
can conclude that R... |=

⋀︁
i∈I ψ...i.

This �nishes the induction on formulas, so by the principle of well-founded induction,
it holds that R preserves all formulas. We can conclude that R ⊆ (⊑+).

This proof is slightly di�erent from the proof in [95], which this chapter is based on,
which uses types as the basis for the induction. The proof is changed in this dissertation,
to accommodate situations where an induction on types is impossible (e.g., polymorphic
and recursive types). This accommodation will be needed in Chapter 7.

Note that the previous lemma provides us with a proof technique for proving that
two terms are related via the positive behavioural preorder, by relating them via some
simulation. We can conclude from Lemmas 4.2.5 and 4.2.6 that ⊑+ is the largest
applicative O-simulation, hence we can conclude that the following theorem holds:

Theorem 4.2.7 (The Coincidence Theorem I). If all modalities are leaf-upwards closed,

then the positive behavioural preorder ⊑+ is applicative O-similarity.

Adapting the proofs of Lemmas 4.2.5 and 4.2.6 slightly, we also get the following:

Theorem 4.2.8 (The Coincidence Theorem II). If all modalities are leaf-upwards

closed, then the full behavioural equivalence ≡ is applicative O-bisimilarity.

Proof. By Lemma 3.4.3 and Corollary 4.1.5 it holds that ≡ is an O-simulation, and
obviously ≡ is symmetric, so it is an O-bisimulation.

Now, let R be an O-bisimulation. We prove that it preserves all formulas ϕ... ∈ V by
an induction on formulas. SinceR is a simulation, we can copy the proof of Lemma 4.2.6
containing all the cases for ϕ... except ϕ... = ¬(ψ...). We need only add this negation case.

10. If ϕ... = ¬(ψ...), then ϕ... ∈ Form(E...). Assume P... RE... R... and P... |= ϕ.... Since R is
symmetric, R... RE... P..., so if R... |= ψ... then by induction hypothesis P... |= ψ.... However,
P... |= ¬(ψ...) so we have a contradiction. We conclude that R... |= ¬(ψ...).

This concludes the induction, so R preserves all formulas from V. So ≡ is an O-
bisimulation containing all O-bisimulations, hence it is the largest O-bisimulation.

The connection to applicative simulations will allow us to prove that the open ex-
tensions of the behavioural equivalences are compatible: Theorems 4.5.2 and 4.5.5. The
rest of this chapter is devoted to the proofs of those theorems.

76 CHAPTER 4. APPLICATIVE BISIMILARITY

4.3 Relator properties

In this section, we look at other properties of relators needed to establish compatibility
of the open extensions of applicative O-similarity and applicative O-bisimilarity. These
properties were identi�ed in [14], and require that we have a decomposable set of Scott
open modalities.

The next lemma states that the relator interacts well with the structure of the monad
given by the triple (T (−), η, µ).

Lemma 4.3.1. If O is a decomposable set of leaf-upwards closed modalities, then:

1. For all R ⊆ X × Y , x ∈ X and y ∈ Y , xR y ⇒ ⟨x⟩O(R) ⟨y⟩.

2. For R ⊆ X × Y , t ∈ T (T (X)) and r ∈ T (T (Y)), tO(O(R)) r ⇒ µtO(R)µr.

Proof. We prove the properties in sequence.

1. Let D ⊆ X and ⟨x⟩ ∈ o(D), then either: x ∈ D and ⟨∗⟩ ∈ JoK, or ⊥ ∈ JoK.

By leaf-upwards closure of o, if ⊥ ∈ JoK then ⟨∗⟩ ∈ JoK and hence, since the tree
⟨y⟩[∈ (R↑[D])] either is equal to ⊥ or ⟨∗⟩, ⟨y⟩ ∈ o((R↑[D])).

If ⟨∗⟩ ∈ JoK and x ∈ D, then y ∈ (R↑[D]). So ⟨y⟩[∈ (R↑[D])] = ⟨∗⟩ ∈ JoK.

2. Assume:

(I) tO(O(R)) r and µt ∈ o(E), where o ∈ O and E ⊆ X.

Take D ⊆ T (1) and γ ∈ O such that t[a ↦→ a[∈ E]] ∈ γ(D). We de�ne S :=

{a ∈ TX | a[∈ E] ∈ D}, so it holds that t ∈ γ(S). By tO(O(R)) r we get
r ∈ γ(O(R) ↑[S]). We prove that for b ∈ (O(R) ↑[S]), b[∈ (R↑[E])] ∈ (≼↑[D]).

Suppose b ∈ (O(R) ↑[S]), then there is an a ∈ S such that a[∈ E] ∈ D and
aO(R) b. If a[∈ E] ∈ JδK for some δ ∈ O, then b[∈ (R↑[E])] ∈ JδK. If
a[∈ E][∈ ∅] = a[∈ ∅] ∈ JδK for some δ ∈ O it holds that b[∈ (R↑[E])][∈ ∅] =
b[∈ ∅] = b[∈ (R↑[∅])] ∈ JδK. So a[∈ E] ≼ b[∈ (R↑[E])], and since a[∈ E] ∈ D it
holds that b[∈ (R↑[E])] ∈ (≼↑[D]). It follows that:

(O(R) ↑[S]) ⊆ {b ∈ T (Y) | b[∈ (R↑[E])] ∈ (≼↑[D])}

By leaf-upwards closure of γ and since r ∈ γ(O(R) ↑[S]), it holds that r ∈
γ({b | b[∈ (R↑[E])] ∈ (≼↑[D])}) and hence r[b ↦→ b[∈ (R↑[E])]] ∈ γ(≼↑[D]). So
we have derived that for all γ and D:

t[a ↦→ a[∈ E]] ∈ γ(D) =⇒ r[b ↦→ b[∈ (R↑[E])]] ∈ γ(≼↑[D]).

By decomposability, (µt)[∈ E] = µ(t[a ↦→ a[∈ E]]) ≼ µ(r[b ↦→ b[∈ (R↑[E])]]) =

(µr)[∈ (R↑[E])]. With (µt) ∈ o(E) from our starting assumption (I), we get
(µr) ∈ o(R↑[E]). So we conclude that µtO(R)µr.

4.3. RELATOR PROPERTIES 77

The following properties show that the relator behaves well with respect to the domain
structure on trees. These properties will be used in our application of Howe's method,
particularly in Lemma 4.4.17, whose proof contains an induction on the operational
semantics.

Lemma 4.3.2. If O only contains Scott open modalities, then:

1. If R ⊆ X ×X is re�exive, then t ≤ r implies tO(R) r.

2. Suppose R ⊆ X × Y . For any two sequences u0 ≤ u1 ≤ u2 ≤ · · · ∈ T (X) and

v0 ≤ v1 ≤ v2 ≤ · · · ∈ T (Y): (∀n, unO(R) vn) ⇒ (⊔nun)O(R) (⊔nvn)

Proof.

1. If R is re�exive then O(R) is re�exive by Lemma 4.1.2. Now for t ≤ r, it holds
that t[∈ D] ≤ r[∈ D]. Hence if t ∈ o(D), by upwards closure of o, r ∈ o(D). By
re�exivity, r O(R) r, so r ∈ o(R↑[D]).

2. Suppose that for all n ∈ N, unO(R) vn. Take D ⊆ X and o ∈ O such that
(⊔nun) ∈ o(D). Now (⊔nun)[∈ D] = ⊔n(un[∈ D]), so by Scott openness there
is an m ∈ N such that um ∈ o(D). Using the assumption that umO(R) vm, we
derive vm ∈ o(R↑[D]). Since vm ≤ ⊔nvn, vm[∈ (R↑[D])] ≤ (⊔nvn)[∈ (R↑[D])],
hence by upwards closure of o, we conclude that (⊔nvn) ∈ o(R↑[D]).

The lemmas above list the properties of the relator su�cient for establishing com-
patibility, which are satis�ed when our set O is a decomposable set of Scott open
modalities. The results below follow from those above, speci�cally the next result com-
bines Lemma 4.3.1 with the fact that O(id1) is actually the same relation as ≼, and
O(≼) is the same relation as ⋞.

Corollary 4.3.3. If O contains only leaf-upwards closed modalities, then O is decom-

posable i� ∀R ⊆ X × Y,∀t, r ∈ T (T (1)), tO(O(R)) r ⇒ µt O(R) µr.

This provides yet another characterisation of decomposability, complementing
Lemma 3.3.22 and Proposition 3.3.23.

Lastly, we verify preservation over sequencing and algebraic e�ect operators.

Corollary 4.3.4. If O is a decomposable set of leaf-upwards closed modalities, then:

1. Given f : X → Z, g : Y →W , R ⊆ X × Y and S ⊆ Z ×W , if for all x ∈ X and

y ∈ Y it holds that xR y ⇒ f(x) O(S) g(y) then ∀t ∈ T (T (X)), r ∈ T (T (Y)):

tO(R) r =⇒ µ(t[x ↦→ f(x)]) O(S) µ(r[y ↦→ g(y)])

78 CHAPTER 4. APPLICATIVE BISIMILARITY

2. For an e�ect operator op : Nn × αN → α or op : Nn × αm → α, and uiSvi
for all i ∈ I, where I = N or I = {0, . . . ,m − 1} respectively, it holds that:

opl1,...,ln(u0, u1, . . .)O(S) opl1,...,ln(v0, v1, . . .).

Proof. We prove the properties in order.

1. Using Lemma 4.1.3 on the assumptions we get t[x ↦→ f(x)] O(O(S)) r[y ↦→ g(y)].
We can then apply property 2 of Lemma 4.3.1 to get the correct result.

2. We apply the previous property to the following data; t = r = op(0, 1, 2, . . .) ∈
T (N), f(n) = un, g(n) = vn and R = idN. The conclusion follows directly.

Point 2 of Corollary 4.3.4 has been stated in such a way that it contains both the in�nite
arity case Nn × αN → α and the �nite arity case Nn × αm → α for algebraic e�ect
operators. So it states that any lifted relation is preserved under any of the algebraic
e�ect operators.

4.3.1 Relator observations

We �nish this section with some minor results about our particular construction of
relators. These are not needed in Section 4.4 for the proof of the Compatibility theorem.
However, they do further our understanding of O-relators. First we show an equivalent
de�nition of O-relator.

Lemma 4.3.5. If all modalities of O are leaf-upwards closed, then tO(R) r holds if and

only if:

∀A ⊆ X,B ⊆ Y, (∀x ∈ X, y ∈ Y, (xR y ∧ x ∈ A) ⇒ y ∈ B) ⇒ t[∈ A] ≼ r[∈ B]

Proof. This holds since if ∀x∈X, y ∈ Y, (xR y∧x ∈ A) ⇒ y∈B, then (R↑[A]) ⊆ B.

The following lemma holds since O(R) is de�ned using a universal quanti�cation
over the modalities of O.

Lemma 4.3.6. Let O and O′ be two sets of modalities for the same signature Σ, then

O(R) ∩ O′(R) = (O ∪O′)(R).

We relate the notion of relator to the notion of behavioural property.

De�nition 4.3.7. Suppose R ⊆ X ×X. A subset D ⊆ X is called R-closed, if:

∀x, y ∈ X, xR y ∧ x ∈ D ⇒ y ∈ D.

Note that if R is an equivalence relation, then any R-closed set is a union of equiv-
alence classes of R.

The notion of R-closedness generalises the notion of behavioural property, since the
≡E...-closed sets are given precisely by formulas ϕ... ∈ Form(E...) in the following sense:

4.4. HOWE'S METHOD 79

Lemma 4.3.8. Suppose D ⊆ Terms(E...), then D is ≡E...-closed if and only if there is a

formula ϕ... ∈ Form(E...) such that D = {P... ∈ Terms(E...) | P... |= ϕ...}.

Proof. If D is a ≡E...-closed set, then it is characterised by
⋁︁
{χP... | P... ∈ D}, where χP... is

as in Lemma 3.3.6.
If D = {P... ∈ Terms(E...) | P... |= ϕ...}, then for P... ∈ D, R... ∈ Terms(E...), if P... ≡E... R... then

since P... |= ϕ it holds that R... |= ϕ. So R... ∈ D and we conclude that D is ≡E...-closed.

We can make two observations about R-closed sets in general:

� If R ⊆ X ×X is transitive, then for any D ⊆ X, (R↑[D]) is R-closed.

� If R ⊆ X ×X is re�exive, then for any R-closed set D ⊆ X, (R↑[D]) = D.

These observations can be used to give a last characterisation of the O-relator, in
the case that it is acting on endorelations.

Lemma 4.3.9. If R ⊆ X×X is a preorder and all o ∈ O are leaf-upwards closed, then

for any t, r ∈ T (X):

tO(R) r ⇐⇒ ∀R-closed D ⊆ X,∀o ∈ O, (t ∈ o(D) ⇒ r ∈ o(D)).

Proof. (⇒) Assume t ∈ o(D) for D an R-closed set, then r ∈ o(R↑[D]), and since
(R↑[D]) = D we conclude that r ∈ o(D).

(⇐) Assume t ∈ o(D) for some D ⊆ X. Since R is re�exive, D ⊆ (R↑[D]), and
since o is leaf-upwards closed, t ∈ o(R↑[D]). Since (R↑[D]) is R-closed, we can conclude
that r ∈ o(R↑[D]).

4.4 Howe's method

In this section, we use Howe's method, �rst developed in [30, 31], to establish that
the open extension of the applicative similarity and bisimilarity are compatibility, in
Theorems 4.5.2 and 4.5.5.

Given a well-typed relation R on closed terms, we de�ne its Howe closure R•, which
is compatible and contains the open extension R◦ (De�nition 3.3.7). Our proof makes
fundamental use of the relator properties from Sections 4.1 and 4.3, closely following
the approach of [14].

We will go into the proof of the Compatibility Theorem, using Howe's method, in
more detail. Remember the de�nitions of open extension R◦ (De�nition 3.3.7) and
compatible re�nement ˆ︁R (Subsection 3.3.2). For any well-typed open relation R, we
de�ne the closed limitation R⊢ as the relation of R limited to closed terms. So in
particular, we observe that for any relation R on closed terms, R◦⊢ = R.

De�nition 4.4.1. For a closed relationR we de�ne the Howe closure R• as the smallest
open relation S closed under the rule:

Γ ⊢... P... ˆ︁S R... Γ ⊢... R... R◦ Q...
Γ ⊢... P... S Q...

(H)

80 CHAPTER 4. APPLICATIVE BISIMILARITY

In other words, the Howe closure is the least solution for S to the inclusion ˆ︁S R◦ ⊆ S.
Moreover, it is also the least solution for S to the equation S = ˆ︁S R◦. In particular, it
holds that R• = ˆ︂R•R◦. We look at some preliminary results, mostly from Lassen [41]:

Lemma 4.4.2. If R is a well-typed re�exive closed relation, then:

1. R• is compatible, hence a re�exive open relation.

2. R◦ ⊆ R•.

Proof. We prove the properties separately.

1. Since R is re�exive, so is R◦. Hence ˆ︂R• = ˆ︂R•id ⊆ ˆ︂R•R◦ = R•. Any compatible
relation is re�exive, since the typing judgements line up with the compatible
re�nement rules.

2. Note that the compatible re�nement of a re�exive relation is re�exive. Hence ˆ︂R•

is re�exive, since R• is. So R◦ = id R◦ ⊆ ˆ︂R•R◦ = R•.

The next lemma proves that the Howe closure of a re�exive set is substitutive, as in
for example [75]. We give a sketch of the proof in terms of the coinductive de�nition of
the Howe closure (see, e.g., [15] for a more complete proof for a probabilistic language).

Lemma 4.4.3 (Substitutivity). If R is a re�exive, transitive, and closed well-typed

relation, and suppose that (Γ;x :B; Γ′ ⊢... P... R• R... : E...) and (Γ′ ⊢ V R• W : B) hold,

then (Γ; Γ′ ⊢... P...[V/x] R• R...[W/x] : E...).

Proof. We perform an induction on the shape of P... (which may be a value or a
computation). If (Γ;x : B; Γ′ ⊢... P...R•R... : E...) then by H it holds that (Γ;x :

B; Γ′ ⊢... P... ˆ︂R•Q...) and (Γ;x : B; Γ′ ⊢... Q...R◦R...) for some Q.... So we know that
(Γ; Γ′ ⊢... Q...[W/x]R◦R...[W/x]). We need to prove that (Γ; Γ′ ⊢... P...[V/x]ˆ︂R•Q...[W/x]). In
each of the cases of P..., (Γ;x :B; Γ′ ⊢... P... ˆ︂R•Q...) is derived from rule Cn for some num-
ber n. This rule has as its premise some sequence of relations P...iR•Q...i. By induc-
tion hypothesis it holds that P...i[V/x]R•Q...i[W/x], this is also trivially true in the base
cases n ∈ {1, 2} since then the sequence is empty. Using Cn we can then derive that
(Γ; Γ′ ⊢... P...[V/x]ˆ︂R•Q...[W/x]). One can verify that this argument works for each of the
cases of Cn. So (Γ; Γ′ ⊢... P...[V/x]ˆ︂R•Q...[W/x]) and (Γ; Γ′ ⊢... Q...[W/x]R◦R...[W/x]), hence
Γ ⊢... P...[V/x]R•R...[W/x].

Another result concerns the composition of the Howe closure with the open extension
of the original relation. The �rst point of this result is featured for example in [41].

Lemma 4.4.4. If R is a well-typed preorder on closed terms, and O(−) is a relator,

then we have:

1. R•R◦ ⊆ R•.

2. For closed terms M,N : FA and t ∈ T (A) such that |M | O(R•) t and

t O(R◦) |N |, it holds that |M | O(R•) |N |.

4.4. HOWE'S METHOD 81

Proof. We prove the properties individually.

1. We use that R is transitive, hence R◦ is transitive meaning R◦R◦ ⊆ R◦. Hence
with R• = ˆ︂R•R◦ it holds that R•R◦ = (ˆ︂R•R◦)R◦ ⊆ ˆ︂R•R◦ = R•.

2. This follows from applying property 2 of De�nition 4.1.1 to the previous statement.

4.4.1 The Howe closure of an applicative O-simulation

We assume O is a decomposable set of Scott open modalities, hence by Lemma 4.1.2,
O(−) is a relator. Let ⊆ be a well-typed preorder on closed terms, and assume ⊆ is
an an applicative O-simulation. We look at the Howe closure of ⊆. The lemmas stated
before are satis�ed, hence in particular it holds that (⊆◦) ⊆ (⊆•) by Lemma 4.4.2. We
prove that ⊆•⊢ is an O-simulation. All terms in the following lemmas are assumed to
be closed, unless stated otherwise, and the lemmas hold for any well-typed preorder on
closed terms ⊆.

Lemma 4.4.5. If for closed terms V,W : N it holds that V ⊆•W , then V =W .

Proof. Using the de�nition of ⊆• there must be an L : N such that V ˆ︂⊆• L and L⊆W ,
the latter implying L = W because of simulation property (1). We do an induction on
the shape of V .

Induction basis, if V = Z, then V ˆ︂⊆• L could only have come from rule C3, so L = Z

and hence V = L =W .
Induction step, if V = S(V ′), then the statement V ˆ︂⊆•L could only have come from

rule C4, so L = S(L′) where V ′⊆• L′. By induction hypothesis, V ′ = L′. Hence
V = S(V ′) = S(L′) = L =W .

Two other simulation properties follow directly from Lemma 4.4.2.

Lemma 4.4.6. By compatibility of ⊆• the following three statements are apparent:

1. For M ⊆•
A→CN it holds that ∀V ∈ Terms(A), M V⊆•

CN V .

2. For M ⊆•
Πi∈I Ci

N it holds that ∀j ∈ I,M j⊆•
Cj
N j.

Lemma 4.4.7. For thunk(M)⊆•
UC thunk(N) it holds that M ⊆•

CN .

Proof. There is a term thunk(K) such that thunk(M) ˆ︂⊆•
UC thunk(K)⊆◦thunk(N). By

simulation property, K⊆◦N . The statement thunk(M) ˆ︂⊆•
UC thunk(K) could only have

come from compatible re�nement rule C19, so M ⊆•K. We now use Lemma 4.4.4 to
conclude that M ⊆•N .

Lemma 4.4.8. If (j, V)⊆•
Σi∈I Ai (k,W) then j = k and V ⊆•

Aj W .

82 CHAPTER 4. APPLICATIVE BISIMILARITY

Proof. There is a pair (l, L) such that (j, V) ˆ︂⊆•
Σi∈I Ai (l, L)⊆◦(k,W). The latter implies

l = k and L⊆W by simulation property. The former statement can only have come from
compatible re�nement rule C13, so j = l = k and V ⊆• L. We now use Lemma 4.4.4
to conclude that V ⊆•W .

Lemma 4.4.9. If (V, V ′)⊆•
A×B (W,W ′) then V ⊆•

AW and V ′⊆•
BW

′.

Proof. There is a pair (L,L′) such that (V, V ′) ˆ︂⊆•
A×B (L,L′)⊆◦(W,W ′). The latter

implies L⊆W and L′⊆W ′ by simulation property. The former statement can only
have come from compatible re�nement rule C15, so V ⊆• L and V ′⊆• L′. We use
Lemma 4.4.4 to conclude that V ⊆•W and V ′⊆•W ′.

So all conditions except 6 of being an O-simulation (De�nition 4.2.1) are proven to be
satis�ed by the Howe closure of an O-simulation.

4.4.2 E�ectful behaviour and the proof by induction

It is most di�cult to prove that the Howe closure of an O-simulation satis�es condition
of De�nition 4.2.1. The proof needs an induction on the reduction relation of terms.
It requires us to look at terms P..., R... of type FA such that P...⊆•R..., and prove that
|P...| O(⊆•) |R...|. Using continuity, this can be reduced to proving that |P...|nO(⊆•) |R...|
for all n (see Lemma 4.4.17). So the property can be proven using an induction on n.
In this proof by induction, one would look at the shape of P... and see what it reduces
to after one step, so one can use the induction hypothesis on that result. This is a
relatively straightforward investigation in the �ne-grained call-by-value case considered
in the paper this chapter is based on [95].

However, in our operational semantics of call-by-push-value, we see cases where we
do not know directly how to reduce a term. In such cases, we used a system of stacks
to focus the evaluation of a program on a subterm (see Subsection 2.1.1). For instance,
to evaluate M V , we �rst need to evaluate M . However, M may invoke e�ects, and as
a term of function type, such e�ects are not `directly' observable. So we need to give
ourselves a bit more information on M before we can properly perform the proof by
induction.

This is also necessary for terms of the form M i. One program packed in a stack
S{M} for which we do already have enough information, is a program of the shape
S{M} =M to x.N . Here, M is of a producer-type, at which e�ects are observed with
modalities as usual. So the induction hypothesis will give us su�cient information to
carry out the induction. Note that this (−) to x.N operator is the only sort of stack
used in the operational semantics of a �ne-grained call-by-value language.

So in order to give us su�cient information during our induction proof of
Lemma 4.4.17, we need to give ourselves more information on the terms we are in-
vestigating.

De�nition 4.4.10. A stack S is called a frame if it only consists of (−) V and (−) i

parts. A computation term is called informative if it is not of the form M V or M i.

4.4. HOWE'S METHOD 83

We use the term `informative' to simply label terms which give us enough infor-
mation to perform the forthcoming proof by induction directly. For instance, all �ne-
grained call-by-value terms as embedded in the call-by-push-value language are infor-
mative. Examples of informative terms include; M to x.N , return(V), force(V), λx.M
and or(M,N).

Doing structural induction on terms, we observe the following result.

Lemma 4.4.11. Any computation term M is uniquely of the form S{M ′} where S is

a frame and M ′ is an informative term.

This lemma is motivation for the introduction of frames. It tells us that each term
has an informative core, which will yield enough information to carry out our proof by
induction. Before that proof however, we need to establish a plethora of smaller results.

Lemma 4.4.12. For any frame S ∈ Stack(C,D), if M⊆CN then S{M}⊆DS{N}.

Proof. We do an induction on the shape of S. For the induction basis, where S = ε the
conclusion follows from S{M} = M and S{N} = N . For the induction step, assume
as induction hypothesis that the result holds for Z ∈ Stack(C′,D).

If S = Z◦(−) V , thenC is of the formA → C′. Since⊆ is a simulation,M⊆A→C′N

implies M V⊆C′N V , so by induction hypothesis S{M} = Z{M V }⊆DZ{N V } =

S{N}.
If S = Z ◦ (−) j, then C is of the form Πi∈I Ci where Cj = C′. Since ⊆ is a

simulation, M⊆Πi∈I Ci
N implies M j⊆C′N j, so by induction hypothesis S{M} =

Z{M j}⊆DZ{N j} = S{N}.

De�nition 4.4.13. Given two frames S and Z, we say Z dominates S if:

1. If S = ε then Z = ε.

2. If S = S′ ◦ (−) V then Z = Z ′ ◦ (−) V ′ where V ⊆• V ′, and Z ′ dominates S′.

3. If S = S′ ◦ (−) i then Z = Z ′ ◦ (−) i and Z ′ dominates S′.

Note that the above relation on frames is not symmetric. Dominating frames are
very handy, since they can make use of compatibility:

Lemma 4.4.14. If frame Z dominates frame S, and M ⊆•N , then S{M}⊆• Z{N}.

Proof. This follows from compatibility of ⊆•, using an induction on frames.

Note that ((−) V ◦S){M} = S{M} V , which can be proven by a simple induction on
stacks. Similar properties hold for the other Stack constructors. We have the following
fundamental property.

Lemma 4.4.15. Given a frame S and two closed computation terms M ′ and N such

that S{M ′}⊆•N , then there is a frame Z and a term N ′ such that; Z dominates S,

M ′ ˆ︂⊆•N ′ and Z{N ′}⊆N .

84 CHAPTER 4. APPLICATIVE BISIMILARITY

Proof. We do this by induction on frame S. If S = ε, then the statements hold by
taking Z = ε and N ′ such that M ′ ˆ︂⊆•N ′⊆N , which exists since (⊆•) = (ˆ︂⊆•) ◦ (⊆◦).
Now for the induction step, assume the statement holds for any smaller frame S′.

1. If S = ((−) V) ◦ S′, then S{M ′} = (S′{M ′} V). Now, there is a term K such
that S{M ′} ˆ︂⊆•K⊆N . The statement (S′{M ′} V) ˆ︂⊆•K could only have been
derived from rule C12, so we know there are K ′ and W such that K = (K ′ W),
S′{M ′}⊆•K ′, and V ⊆•W .

We use the induction hypothesis on S′{M ′}⊆•K ′ to �nd a term N ′ and frame Z ′

dominating S′ such that M ′ ˆ︂⊆•N ′ and Z ′{N ′}⊆K ′. Let Z := ((−) W) ◦ Z ′,
then Z dominates S. From Z ′{N ′}⊆K ′ and simulation rule 5 it holds that
Z{N ′} = (Z ′{N ′} W)⊆(K ′ W) = K. With K⊆N we can conclude that
Z{N ′}⊆N because ⊆ is a preorder. From earlier, M ′ ˆ︂⊆•N ′, so Z and N ′ have
the desired properties.

2. If S = ((−) i) ◦ S′, then S{M ′} = (S′{M ′} i). Now, there is a term K such that
S{M ′} ˆ︂⊆•K⊆N . The statement (S′{M ′} i) ˆ︂⊆•K could only have been derived
from rule C18, so we know there is a K ′ such that K = (K ′ i) and S′{M ′}⊆•K ′.

We use the induction hypothesis on S′{M ′}⊆•K ′ to �nd a term N ′ and frame Z ′

dominating S′ such that M ′ ˆ︂⊆•N ′ and Z ′{N ′}⊆K ′. Let Z := ((−) i) ◦ Z ′, then
Z dominates S. From Z ′{N ′}⊆K ′ and simulation rule 7 it holds that Z{N ′} =

(Z ′{N ′} i)⊆(K ′ i) = K. With K⊆N we can conclude that Z{N ′}⊆N and from
earlier M ′ ˆ︂⊆•N ′. So Z and N ′ have the desired properties.

The last important property of frames is that they act nicely with respect to the
reduction relation, which can be proven by a simple induction on frames.

Lemma 4.4.16. By induction on frames S, we can derive the following facts:

1. If M ⇝ N , then for any k ∈ N and any frame S, |S{M}|k+1 = |S{N}|k.

2. If (S,M)↣ (Z,K)↣ (S,N), then |S{M}|k+2 = |S{N}|k.

3. |S{op(l1, . . . , lm;M1, . . . ,Mk)}|n+1 ≤ opl1,...,lm⟨|S{M1}|n, . . . , |S{Mk}|n⟩ and

|S{op(l1, . . . , lm;M1, . . . ,Mk)}| = opl1,...,lm⟨|S{M1}|, . . . , |S{Mk}|⟩, for any ef-

fect operator op : Nm × αk → α ∈ Σ.

4. |S{op(l1, . . . , lm;x ↦→ M)}|n+1 ≤ opl1,...,lm⟨k ↦→ |S{M [k/x]}|max(0,n−k)⟩ and

|S{op(l1, . . . , lm;x ↦→ M)}| = opl1,...,lm⟨k ↦→ |S{M [k/x]}|⟩, for any e�ect oper-

ator op : Nm × αN → α ∈ Σ.

Proof. If S has length m, then (ε, S{M}) reduces in m steps to (S,M). All the above
results can then be established by reducing M . If the index of | − |(−) is too small,
properties 1 and 2 still hold because both sides will be ⊥, and properties 3 and 4 hold
because of the use of the inequality ≤.

4.4. HOWE'S METHOD 85

We have �nally have the necessary tools to prove the Key Lemma, which contains
the proof by induction we eluded to in this subsection.

Lemma 4.4.17. (Key Lemma) Let n ∈ N. Given two closed terms M , N of type FA

such that M ⊆•N , then it holds that |M |nO(⊆•) |N |.

Proof. We do an induction on n.
Base case. If n = 0, then |M |0 = ⊥. Hence |M |0O(⊆•) |N | by Lemma 4.3.2.
Induction step (n+1). We assume as the induction hypothesis that for any k ≤ n

and M ′⊆•N ′ it holds that |M ′|kO(⊆•) |N ′|. To prove, for any M ⊆•N it holds that
|M |n+1O(⊆•) |N |.
Assume M ⊆•N . We use Lemma 4.4.11 to �nd a frame S and an informative term M ′

such that M = S{M ′}. We then use Lemma 4.4.15 to �nd a frame Z dominating S
together with a term N ′ such that: Z{N ′}⊆N and M ′ ˆ︂⊆•N ′.

In the next lemma, Lemma 4.4.18, we prove that under the current circumstances,
|M |n+1 = |S{M ′}|n+1O(⊆•) |Z{N ′}| holds3. Given this, since Z{N ′}⊆N and hence
by simulation property 6 |Z{N ′}|O(⊆) |N |, we can conclude via Lemma 4.4.4 that
|M |n+1O(⊆•) |N |.

Lemma 4.4.18. Suppose that for all k ∈ N, k ≤ n, and for all closed terms P ,Q : FA:

(IH) P ⊆•Q =⇒ |P |kO(⊆•) |Q| .

For any two closed terms S{M}, Z{N} with M informative, and Z a frame dominating

the frame S, it holds that M ˆ︂⊆•N =⇒ |S{M}|n+1O(⊆•) |Z{N}|.

Proof. We assume M ˆ︂⊆•N and do a case distinction on M , which is informative, so
not equal to either (P V) or (P i). We start with the three cases where the frame S is
actively used.

1. IfM = return(V) : C, then C = FB for some B, so frame S must be ε as no other
frames accept a term of this type. Hence M = S{M}, C = FA, and |S{M}| =
|M | = ⟨V ⟩. The dominating frame Z must be ε too, so return(V) ˆ︂⊆•N = Z{N}.
This is only possible from compatibility rule C7, meaning N = return(W) for
some W such that V ⊆•W . By Lemma 4.3.1, ⟨V ⟩ O(⊆•) ⟨W ⟩, hence:

|S{M}|n+1 = |return(V)|n+1 = ⟨V ⟩ O(⊆•) ⟨W ⟩ = |return(W)| = |N | = |Z{N}|.

2. If M = λx. P , then for S{M} to be of type FA, S must be non-empty, and
hence of the form S′ ◦ (−) V . Since Z dominates S, Z = Z ′ ◦ (−) W where
Z ′ dominates S′, and V ⊆•W . The statement M = (λx. P) ˆ︂⊆•N could only
have been derived via compatibility rule C11, so N = λx.Q for some Q where
(x :B) ⊢ P ⊆•Q : D. By Lemma 4.4.3 it holds that P [V/x]⊆•Q[W/x], so we
can do the following derivation using (IH) on k = (n− 1) and Lemma 4.4.16:

|S{M}|n+1 = |S′{λx. P V }|n+1 = |S′{P [V/x]}|n−1 O(⊆•) |Z ′{Q[W/x]}| =

|Z{N}|.
3In order to more easily add cases for M when extending the language in Chapter 7, we separate

this result from the current lemma.

86 CHAPTER 4. APPLICATIVE BISIMILARITY

3. IfM = ⟨P i | i ∈ I⟩, then for S{M} to be of type FA, S must be non-empty, hence
of the form S′ ◦ (−) j. Since Z dominates S, Z = Z ′ ◦ (−) j where Z ′ dominates
S′. The statement M = ⟨P i | i ∈ I⟩ ˆ︂⊆•N could only have been derived from
compatibility rule C17, so N = ⟨Q

i
| i ∈ I⟩ for some sequence of Q

i
-s, where

∀i, P i⊆•Q
i
. We can do the following derivation using (IH) on k = (n − 1) and

Lemma 4.4.16:

|S{M}|n+1 = |S′{⟨P i | i ∈ I⟩ j}|n+1 = |S′{P j}|n−1 O(⊆•) |Z ′{Q
j
}| = |Z{N}|.

Computation sequencing is a special case, and needs the decomposability property.

4. If M = P to x.Q, then by Corollary 2.2.7 it holds that |S{M}|n+1 ≤
|P |n[return(V) ↦→ |S{Q[V/x]}|n]. Now M ˆ︂⊆•N results only from compatibil-
ity rule C8, hence N = P ′ to x.Q′, where P ⊆• P ′ and (x :B) ⊢ Q⊆•Q′. By a
generalisation of Corollary 2.2.10, |Z{N}| = µ(|P ′|[return(W) ↦→ |Z{Q′[W/x]}|]),
and by (IH) it holds that |P |n O(⊆•) |P ′|.

Let t := |P |n and r := |P ′|, which are trees from T (Tct(FB)).

For any V ⊆•W we get via Lemma 4.4.3 that Q[V/x]⊆•Q′[W/x], and since Z
dominates S it holds that S{Q[V/x]}⊆• Z{Q′[W/x]} and hence by (IH) we get
|S{Q[V/x]}|n O(⊆•) |Z{Q′[W/x]}|. So de�ne f, g : Tct(FB) → T (A), where:

f(return(V)) := |S{Q[V/x]}|n and g(return(V)) := |Z{Q′[V/x]}|.

By using Corollary 4.3.4 on t, r, f, g we conclude that:

|S{M}|n+1 ≤ |P |n[return(V) ↦→ |S{Q[V/x]}|n] O(⊆•)

|P ′|[return(W) ↦→ |Z{Q′[W/x]}|] = |Z{N}| .

Next are the terms which we can reduce with ⇝:

5. IfM = force(V) : C, then since V must be a closed value of typeUC it must be of
the form thunk(P) for some term P , and hence M ⇝ P . Now M ˆ︂⊆•N can only
come from compatibility rule C10, hence N = force(W) where V ⊆•W . From
H we get thunk(P) = V ˆ︂⊆• L⊆W for some L. The �rst relation we can only be
from C9 so L = thunk(R) where P ⊆•R. Since W is closed, it must be of the
form thunk(Q), hence thunk(R)⊆thunk(Q). Since ⊆ is a simulation, we get R⊆Q
hence by Lemma 4.4.4 we get P ⊆•Q where N = force(W) = force(thunk(Q)).
Using the fact that Z dominates S, it holds that S{P}⊆• Z{Q} which by (IH)
and Lemma 4.4.16 means:

|S{M}|n+1 = |S{P}|n O(⊆•) |Z{Q}| = |Z{N}|.

6. If M = case V of {P , S(x) ⇒ Q}, then M ˆ︂⊆•N can only come from compat-
ibility rule C4, hence N = case V ′ of {P ′,S(x) ⇒ Q′} for which it holds that
V ⊆• V ′, P ⊆• P ′ and (x :B) ⊢ Q⊆•Q′. Since V ⊆• V ′ it holds that V = V ′ by
Lemma 4.4.5. We do a case distinction on V .

4.4. HOWE'S METHOD 87

a) If V = Z = V ′, then M ⇝ P so |S{M}|n+1 = |S{P}|n by Lemma 4.4.16,
and since Z dominates S, by (IH), P ⊆• P ′, and Lemma 4.4.14 we have

|S{P}|n O(⊆•) |Z{P ′}| = |Z{case Z of {P ′, S(x) ⇒ Q′}}| = |Z{N}|.

b) If V = S(W) = V ′, then M ⇝ Q[W/x] so |S{M}|n+1 = |S{Q[W/x]}|n by
Lemma 4.4.16, and since (x :B) ⊢ Q⊆•Q′ it holds that Q[W/x]⊆•Q′[W/x]

(Lemma 4.4.3). Since Z dominates S, we can use Lemma 4.4.14 and (IH) to
derive:

|S{M}|n+1 = S{Q[W/x]}|n O(⊆•) |Z{Q′[W/x]}| = |Z{N}|.

7. IfM = let V be x. P : C, then the only premise forM ˆ︂⊆•N is given by compatible
re�nement rule C6, from which we know N = let W be x.Q, where V ⊆•W and
(x :B) ⊢ P ⊆•Q. From this and Lemma 4.4.3 it holds that P [V/x]⊆•Q[W/x]

hence since Z dominates S, S{P [V/x]}⊆• Z{Q[W/x]}, so by (IH) it holds that
|S{P [V/x]}|n O(⊆•) |Z{Q[W/x]}|. We have M ⇝ P [V/x] hence |S{M}|n+1 =

|S{P [V/x]}|n, similarly |Z{N}| = |Z{Q[W/x]}| so |S{M}|n+1 O(⊆•) |Z{N}|.

8. If M = fix(P) : C, then M ˆ︂⊆•N can only be from C19, hence N =

fix(P ′) where P ⊆• P ′. By compatibility, it holds that thunk(P)⊆• thunk(P ′).
Look at the computation term Q = (force(x) thunk(fix(x))) in context
(x : U (B → C)). For any M ′ : B → C, fix(M ′) ⇝ Q[thunk(M ′)/x]. By
re�exivity it holds that Q⊆•Q and hence by Lemma 4.4.3 it holds that
Q[thunk(P)/x]⊆•Q[thunk(P ′)/x]. Using that Z dominates S and (IH) holds
we derive that |S{Q[thunk(P)/x]}|n O(⊆•) |Z{Q[thunk(P ′)/x]}| and the de-
sired conclusion follows from |S{M}|n+1 = |S{Q[thunk(P)/x]}|n and |Z{N}| =
|Z{Q[thunk(P ′)/x]}|.

The pattern match cases:

9. If M = (pm V as {(i.x).P i}i∈I), then M ˆ︂⊆•N can only come from rule C14,
hence N = (pm W as {(i.x).Q

i
}i∈I) where V ⊆•W and for each i it holds that (x :

B) ⊢ (P i⊆•Q
i
). As values from a sum-type, V andW must be of the form (j, V ′)

and (k,W ′) respectively, where by the simulation rule proven in Lemma 4.4.8 it
holds that j = k and V ′⊆•W ′. Hence M ⇝ P j [V

′/x] and N ⇝ Q
j
[W ′/x],

where by compatibility P j [V
′/x]⊆•Q

j
[W ′/x]. We conclude by (IH) that:

|S{M}|n+1 = |S{P j [V ′/x]}|n O(⊆•) |Z{Q
j
[W ′/x]}| = |Z{N}|.

10. If M = (pm V as (x, y).P), then M ˆ︂⊆•N can only be from rule C16, hence
N = (pm W as (x, y).Q) where V ⊆•W and (x :B; y : B′) ⊢ (P ⊆•Q). As values
of a pair-type, V and W must be of the form (V0, V1) and (W0,W1) respectively,
where by the simulation rule proven in Lemma 4.4.9 it holds that V0⊆•W0 and
V1⊆•W1. Hence by M ⇝ P [V0/x, V1/y] and N ⇝ Q[W0/x,W1/y], and by
applying Lemma 4.4.3 twice, P [V0/x, V1/y]⊆•Q[W0/x,W1/y]. We conclude by
(IH) that:

|S{M}|n+1 = |S{P [V0/x, V1/y]}|n O(⊆•) |Z{Q[W0/x,W1/y]}| = |Z{N}|.

88 CHAPTER 4. APPLICATIVE BISIMILARITY

Lastly the e�ect operator cases.

11. If M = op(V1, . . . , Vm;P 1, . . . , P k) : C where op : Nm × αk → α, then M ˆ︂⊆•N

can only be from C20, hence N = op(V ′
1 , . . . , V

′
m;P

′
1, . . . , P

′
k) where for all i

between 1 and m, P i⊆• P ′
i, and for all j between 1 and k, Vj = V ′

j because
of Lemma 4.4.5. Since Z dominates S and (IH) holds, |S{P i}|nO(⊆•) |Z{P ′

i}|,
hence by Lemma 4.4.16 and Lemma 4.3.4:

|S{M}|n+1 ≤ opV1,...,Vm⟨|S{P 1}|n, . . . , |S{P k}|n⟩ O(⊆•)

opV1,...,Vm{|Z{P
′
1}|n, . . . , |Z{P ′

k}|n} = |Z{N}|.

12. If M = op(V1, . . . , Vm;x ↦→ P) : C where op : Nm × αN → α, then M ˆ︂⊆•N can
only be from C21, hence N = op(V1, . . . , Vm;x ↦→ P ′) where x : N ⊢ P ⊆•Q.
Hence by Lemma 4.4.3, for all k : N it holds that P [k/x]⊆•Q[k/x] and hence
since Z dominates S and (IH) holds, |S{P [k/x]}|nO(⊆•) |Z{Q[k/x]}|. So by
Lemmas 4.4.16, 4.3.4, and 4.3.2:

|S{M}|n+1 ≤ opV1,...,Vm(k ↦→ |S{P [k/x]}|max(0,n−k)) O(⊆•)

opV1,...,Vm(k ↦→ |Z{Q[k/x]}|) = |Z{N}|.

Those were all the cases for M , so we know that |S{M}|n+1 O(⊆•) |Z{N}| always
holds.

Using Lemma 4.3.2, we can conclude that M ⊆•N ⇒ |M | O(⊆•) |N | for closed
terms of type FA. We combine this result with Lemmas 4.4.5, 4.4.6, 4.4.7, 4.4.8, and
4.4.9 to get the following fundamental proposition:

Proposition 4.4.19. Suppose O is a decompositional set Scott open modalities. Then

for any preorder R on closed terms forming an O-simulation, R•⊢ is an O simulation.

4.5 Compatibility results

Using Proposition 4.4.19, we can derive that the open extensions of applicative O-
similarity and O-bisimilarity are compatible. The proof of this fact is �nished in this
section. As a start, we look at the following standard result:

Lemma 4.5.1. Suppose R is a re�exive, transitive, and closed open relation, and S is

a well-typed closed relation. Then R⊢ ⊆ S implies R ⊆ S◦.

Proof. Assume −→x :
−→
A ⊢... P... R R..., then, because of substitutivity from Lemma 4.4.3, for

any sequence of values
−→
V :

−→
A it holds that P...[

−→
V /−→x] R R...[

−→
V /−→x]. Hence if R⊢ ⊆ S,

then for any
−→
V :

−→
A it holds that P...[

−→
V /−→x] S R...[

−→
V /−→x], and we can conclude that

−→x :
−→
A ⊢... M S◦ N .

Theorem 4.5.2. If O is a decomposable set of Scott open modalities, then the open

extension of the relation of applicative O-similarity is compatible.

4.5. COMPATIBILITY RESULTS 89

Proof. We write ⊑s for the relation of O-similarity. Since ⊑s is an O-simulation, we
know by Proposition 4.4.19 that ⊑•

s
⊢ is an O-simulation, and hence is contained in

O-similarity ⊑s. By Lemma 4.4.2 it holds that ⊑•
s is compatible, and by Lemma 4.5.1

it is contained in the open extension ⊑◦
s. By Lemma 4.4.2, we also know that ⊑◦

s is
contained in ⊑•

s. We can conclude that ⊑◦
s is equal to the Howe closure ⊑•

s, which is
compatible.

To prove that the open extension of applicative O-bisimilarity is compatible, we need
two other results from the literature (e.g., from Lassen [41]). This particular proof uses
what is called the transitive closure trick, and only works if the syntax of the language
is �nitary. See [44] for an approach to applying Howe's method to a language with
in�nitary syntax.

Lemma 4.5.3. The transitive closure of a compatible relation is compatible.

Proof. Suppose R is compatible, we want to prove that ˆ︂R∗ ⊆ R∗. For illustration, we
only prove this for compatible re�nement rule C15, and note that the proof can be
adapted for the other rules.

Assume M R∗
A→CM

′ and V R∗
A V

′, we prove that (M V)R∗
C (M ′ V ′). There

must be sequences N1, . . . , Nn : A → C and W1, . . . ,Wn : A such that M =

N1RN2R . . .RNn =M ′ and V =W1RW2R . . .RWm = V ′. We may assume with-
out loss of generality that n = m because, since R is compatible and hence re�exive (so
M ′RM ′ and V ′RV ′). Since R is compatible, (N1 W1)R (N2 W2)R . . .R (Nn Wn),
hence we can conclude that (M V)R∗

C (M ′ V ′).

Lemma 4.5.4. If R◦ is symmetric and re�exive, then R•∗ is symmetric.

Proof. This proof is taken from [41, Lemma 3.8.2(4)]. Looking at the compatible re-
�nement rules, it is not di�cult to seeˆ︃Sop = ˆ︁Sop for any relation S. From Lemma 4.4.2
we know that R◦ ⊆ R•, and R• is compatible hence by Lemma 4.5.3, ˆ︃R•∗ ⊆ R•∗. So:

ˆ︂R•∗opR◦ = ˆ︂R•∗opR◦op = ˆ︃R•∗opR◦op ⊆

R•∗opR◦op ⊆ R•∗opR•op = R•op∗R•op ⊆ R•op∗ = R•∗op .

Hence R•∗op is a solution for S to the inclusion ˆ︁S R◦ ⊆ S. Since R• is
the least solution, it holds that R• ⊆ R•∗op. So if AR•∗B, then A =

C0R•C1R• . . .R•Cn−1 = B for some choice of sequence {Ci}i∈I , so we can derive
that A = C0R•∗opC1R•∗op . . . R•∗opCn−1 = B meaning AR•∗opB. We conclude that
BR•∗A, so R•∗ is symmetric.

Given these facts, we can derive the following.

Theorem 4.5.5. If O is a decomposable set of Scott open modalities, then the open

extension of the relation of applicative O-bisimilarity is compatible.

90 CHAPTER 4. APPLICATIVE BISIMILARITY

Proof. We write O-bisimilarity as ⊑b. From Proposition 4.4.19 we know that ⊑•
b on

closed terms is an O-simulation. The transitive closure of an O-simulation is an O-
simulation, since all the conditions for a relation to be an O-simulation are preserved
over transitive closure. In particular, the FA clause 6 for being a simulation is pre-
served because of point 2 of Lemma 4.1.2. So we know that (⊑•

b)
∗⊢ = (⊑•

b)
⊢∗ is an

O-simulation. Since ⊑b is re�exive and symmetric, we know by the Lemma 4.5.4 that
⊑•∗
b is symmetric, hence (⊑•

b)
∗⊢ is an O-bisimulation. By Lemma 4.5.3, ⊑•

b
∗ is com-

patible, and by Lemma 4.5.1 it holds that (⊑•∗
b) ⊆ (⊑◦

b). Finally, by Lemma 4.4.2, it
holds that (⊑◦

b) ⊆ (⊑•
b) ⊆ (⊑•∗

b), and hence (⊑•∗
b) = (⊑◦

b). We can conclude that ⊑◦
b is

compatible.

In conclusion, we �nish the proof of Theorem 3.3.8, the Compatibility Theorem.

Proof of Theorem 3.3.8. By Theorem 4.2.7, we know that the positive behavioural pre-
order ⊑+ is equal to applicative O-similarity, which is compatible by Theorem 4.5.2.

By Theorem 4.2.8, it holds that the behavioural equivalence≡ is equal to applicative
O-bisimilarity, which is compatible by Theorem 4.5.5.

5

Logic variations

The formulas of the general logic V were chosen in such a way that the resulting log-
ical equivalence, the behavioural equivalence, is compatible (see Theorem 3.3.8). We
closed the formulas under countable disjunctions and conjunctions, not only to allow for
more expressibility, but also to prove that the behavioural equivalence coincides with
applicative bisimilarity. It turns out however, that the set of chosen formulas can be
greatly reduced without changing the resulting logical equivalence. In this chapter we
explore such di�erent ways of simplifying the syntax of the logic as much as possible
while maintaining its distinguishing power.

Other changes can also be made to the logic, like avoiding reference to program
terms in formulas of function type, or expressing Hoare logic style formulas in the
logic for global store. This chapter studies such variations of the logic, together with
several combinations of e�ects for which we can �nd a suitable set of modalities. Since
the behavioural equivalence coincides with applicative bisimilarity, the results in this
chapter also provide di�erent logical characterisations for applicative bisimilarity.

5.1 Eliminating computation formula connectives

In this section, we prove that excluding connectives for computation formulas does not
change the induced logical equivalence. To prove this, we �rst establish a standard
result from in�nitary propositional logic.

A formula ϕ... ∈ Form(E...) is a series of disjunctions, conjunctions and negations
of basic formulas. Let Bϕ... ⊆ Form(E...) be the underlying set of basic formulas of ϕ....
Speci�cally, Bϕ... := {ϕ...} if ϕ... is a basic formula, B¬(ϕ...) := Bϕ... , and both B⋁︁

X and B⋀︁
X

are equal to
⋃︁
ϕ...∈X Bϕ... . For any set of formulas X, we de�ne ¬X as the set of negations

of formulas from X, speci�cally ¬X := {¬(ϕ...) | ϕ... ∈ X}.

Lemma 5.1.1. Any formula ϕ... ∈ Form(E...) can be written in disjunctive normal

form
⋁︁
i∈I
⋀︁
j∈Ji ϕ...i,j where each ϕ...i,j ∈ Bϕ... ∪ ¬Bϕ... , and in conjunctive normal form⋀︁

i∈I
⋁︁
j∈Ji ϕ...i,j where each ϕ...i,j ∈ Bϕ... ∪ ¬Bϕ... . If ϕ... ∈ Form(E...)V+, the above statements

hold where each ϕ...i,j ∈ Bϕ... .

91

92 CHAPTER 5. LOGIC VARIATIONS

Proof. We �rst prove the result for ϕ... ∈ Form(E...)V+ . Let X be the set of terms P... such
that P... |= ϕ..., and Y the set of terms R... such that P... ̸|= ϕ.... Let P... ∈ X and R... ∈ Y . If for all
ψ... ∈ Bϕ... , (P... |= ψ...) ⇒ (R... |= ψ...), then by induction on ϕ..., R... |= ϕ..., which is a contradiction.
So there is a formula ψ...P...,R... ∈ Bϕ... such that P... |= ψ...P...,R... and R... ̸|= ψ...P...,R... . For such a choice
of formulas, it holds that ϕ... ≡

⋁︁
P...∈X

⋀︁
R...∈Y ψ...P...,R... ≡

⋀︁
R...∈Y

⋁︁
P...∈X ψ...P...,R... .

For ϕ... ∈ Form(E...), we take the same X and Y as above. Let P... ∈ X and R... ∈ Y .
If for all ψ... ∈ Bϕ... , (P... |= ψ...) ⇔ (R... |= ψ...), then by induction on ϕ..., R... |= ϕ..., which is
a contradiction. So there is a formula ψ...P...,R... ∈ Bϕ... ∨ ¬Bϕ... such that P... |= ψ...P...,R... and
R... ̸|= ψ...P...,R... . For such a choice of formulas, it holds that ϕ... ≡

⋁︁
P...∈X

⋀︁
R...∈Y ψ...P...,R... ≡⋀︁

R...∈Y
⋁︁
P...∈X ψ...P...,R... .

The above result is a special case of conjunctive normal form and disjunctive normal
form results in in�nitary propositional logic, which can be proven using a trans�nite
induction on the height of formulas.

This lemma allows us to put formulas in disjunctive or conjunctive normal form,
without changing the used basic subformulas. The main use of this is during an induc-
tion on formulas, where the induction hypothesis gives us information about such basic
subformulas. Inductions on formulas will be prevalent throughout this chapter.

Let us return to the main aim of this section, eliminating connectives from compu-
tation formulas.

De�nition 5.1.2. We de�ne the logic L∗ as the fragment of the logic L which does not
use connectives (disjunctions, conjunctions and negations) for computation formulas.

For example, basic formulas in the logic L∗ of a function type A → FB will always be
of the shape (V ↦→ o(ψ)).

The following result exploits the disjunctive-conjunctive normal form result from
Lemma 5.1.1 to eliminate conjunctions, disjunctions and negations from computation
formulas.

Lemma 5.1.3. Any ϕ... ∈ V is equivalent to some formula of the form
⋁︁
i∈I
⋀︁
j∈Ji ψ...i,j

where each ψ...i,j ∈ V∗ ∪ ¬V∗. Any ϕ... ∈ V+ is equivalent to some formula of the form⋁︁
i∈I
⋀︁
j∈Ji ψ...i,j where each ψ...i,j ∈ (V+)∗.

Proof. We �rstly prove the second statement by induction on formulas ϕ... ∈ V+. Impor-
tantly, if ϕ... is a formula of a value type, then the desired

⋁︁
i∈I
⋀︁
j∈Ji ψ...i,j is a formula

from (V+)∗, so we can say that there is some ϕ...∗ ∈ (V+)∗ s.t. ϕ... ≡ ϕ...
∗.

1. If ϕ... = {n}, then ϕ... ∈ (V+)∗, and note that ϕ... ≡
⋁︁⋀︁

{ϕ...}.

2. If ϕ... = (V ↦→ ϕ′), then by induction hypothesis, ϕ′ =
⋁︁
i∈I
⋀︁
j∈Ji ψ

′
i,j where

ψ′
i,j ∈ (V+)∗. So ϕ... ≡ (V ↦→

⋁︁
i∈I
⋀︁
j∈Ji ψ

′
i,j) ≡

⋁︁
i∈I
⋀︁
j∈Ji(V ↦→ ψ′

i,j), where
ψ′
i,j ∈ (V+)∗.

The proof of the cases where ϕ... = (i ↦→ ψ) and ϕ... = ⟨ϕ′⟩ goes similarly.

5.2. INFINITARY VS FINITARY VALUE FORMULA CONNECTIVES 93

3. For ϕ... = π0(ϕ), then by the induction hypothesis, ϕ ≡ ψ where ψ ∈ (V+)∗. So
ϕ... ≡ π0(ψ) ∈ (V+)∗.

The proof of the case where ϕ... = π1(ϕ), ϕ... = (i, ϕ) and ϕ... = o(ϕ) goes similarly.

4. If ϕ... =
⋁︁
k∈K ϕ...k or ϕ... =

⋀︁
k∈K ϕ...k, apply the induction hypothesis on each ϕ...k and

use Lemma 5.1.1 to put the formula in disjunctive normal form, without changing
the set of basic subformulas (which are from (V+)∗).

In the case of the full logic, we can repeat the proof used above with an induction
on formulas ϕ... ∈ V, with two modi�cations. Firstly, in the �rst point, we may need to
use the equivalence (V ↦→ ¬(ψ′′)) ≡ ¬(V ↦→ ψ′′), and similarly for (i ↦→ ψ) and ⟨ϕ′⟩,
when necessary. Secondly, we have to add one more case:

5. If ϕ... = ¬(ϕ...′), then by the induction hypothesis, ϕ...′ ≡
⋁︁
i∈I
⋀︁
j∈Ji ψ...

′
i,j where ψ...

′
i,j ∈

V∗ ∪ ¬V∗. So ϕ... ≡ ¬(
⋁︁
i∈I
⋀︁
j∈Ji ψ...

′
i,j) ≡

⋀︁
i∈I ¬(

⋀︁
j∈Ji ψ...

′
i,j) ≡

⋀︁
i∈I
⋁︁
j∈Ji ¬(ψ...

′
i,j).

If ψ...′i,j ∈ V∗, then ¬(ψ...′i,j) ∈ ¬V. If ψ...′i,j ∈ ¬V∗, then ψ...′i,j = ¬(ψ...′′i,j) where ψ...′′i,j ∈ V∗,
so ¬(ψ...′i,j) = ¬(¬(ψ...′′i,j)) ≡ ψ...

′′
i,j . So we can use Lemma 5.1.1 to get the desired

conclusion.

We can now establish the main result of this subsection. We have to be a bit careful
though, since a logic without negation for computation formulas does not generally
give a symmetric logical preorder. In particular, we prove in the next statement that
(≡V) = (≡V∗), where moreover we know that (≡V) = (⊑V), whereas (≡V∗) is not
equal to (⊑V∗) because of the lack of negation for computation formulas.

Corollary 5.1.4. It holds that (≡V) = (≡V∗) and (⊑V+) = (⊑(V+)∗).

Proof. We prove the result for V, the proofs for the other case is similar.
If P... ≡V∗ R... and P... |= ϕ... with ϕ... ∈ V, then by Lemma 5.1.3 ϕ... ≡

⋁︁
i∈I
⋀︁
j∈Ji ψ...i,j where

each ψ...i,j ∈ V∗ ∪ ¬V∗. Since P... ≡V∗ R..., it holds that P... |= ψ...i,j ⇐⇒ R... |= ψ...i,j . Now,
there is an i ∈ I such that for all j ∈ Ji, P... |= ψ...i,j hence R... |= ψ...i,j . We conclude that
R... |= ϕ..., so P... ⊑V R..., and hence P... ≡V R....

The reverse implication holds because V∗ ⊆ V.

5.2 In�nitary vs �nitary value formula connectives

In the logic V∗, like in the full logic V, we have in�nitary conjunctions, in�nitary
disjunctions and negations for value formulas. In this section, we study what other even
simpler logics still induce the behavioural preorders ⊑+ and ≡. In particular, we study
in which cases we can use �nitary instead of in�nitary disjunctions and conjunctions,
and in which cases we may remove disjunctions, conjunctions and negations entirely.
To better keep track of all the variations of the logic, we de�ne a logic with a quadruple
(O, a, b, c), consisting of the following four elements designating the inclusion of certain
formula constructors. These are in order:

94 CHAPTER 5. LOGIC VARIATIONS

1. A set of modalities O.

2. A symbol a for the maximum size of disjunction for value formulas, with
⋁︁

for
countable, ∨ for �nite and ⊥ for empty only.

3. A symbol b for the maximum size of conjunction for value formulas, with
⋀︁

for
countable, ∧ for �nite and ⊤ for empty only.

4. A symbol c given by ¬ or +, respectively for including or excluding negations for
value formulas.

More formally, we de�ne (O, a, b, c) as follows:

De�nition 5.2.1. The logic (O, a, b, c) is the logic inductively de�ned using the follow-
ing rules of Figure 3.1:

1. Rules (1) to (6), and rule (8).

2. Rule (7) with modalities from O.

3. Rule (9) for value types over all countable sets X if a =
⋁︁
, only over �nite sets

X if a = ∨, and only over the empty set X = ∅ only if a = ⊥.

4. Rule (10) for value types over all countable sets X if b =
⋀︁
, only over �nite sets

X if b = ∧, and only over the empty set X = ∅ only if b = ⊤.

5. Rule (11) over value types only if c = ¬.

We will exclude connectives for computation formulas, since their exclusion does
not change the logical equivalences according to Corollary 5.1.4. If we de�ne (L)∗ as in
De�nition 5.1.2, then (O,

⋁︁
,
⋀︁
,¬) corresponds to (V)∗, and (O,

⋁︁
,
⋀︁
,+) corresponds

to (V+)∗.

5.2.1 Conditions for simplifying value formula connectives

We will further reduce the logic, given su�cient conditions. The goal of this subsection
is to establish properties of modalities which can be used to simplify the logic in several
ways. Mainly, we aim to replace arbitrary conjunctions and disjunctions with �nite or
even empty conjunctions and disjunctions. However, which simpli�cations are possible
depend greatly on the e�ects and their modalities.

Besides Scott openness, we consider three more properties of modalities which can
be used to simplify the logic.

De�nition 5.2.2. A modality o ∈ O distributes over non-empty disjunctions if for any
non-empty countable set of formulas X ⊆ Form(A), o(

⋁︁
X) ≡

⋁︁
{o(ϕ) | ϕ ∈ X}.

De�nition 5.2.3. A modality o ∈ O distributes over non-empty conjunctions if for any
non-empty countable set of formulas X ⊆ Form(A), o(

⋀︁
X) ≡

⋀︁
{o(ϕ) | ϕ ∈ X}.

5.2. INFINITARY VS FINITARY VALUE FORMULA CONNECTIVES 95

De�nition 5.2.4. A set of modalitiesO allows for negation propagation if for any o ∈ O
and any formula ϕ ∈ Form(A), o(¬(ϕ)) is equivalent to a disjunction of conjunctions
of elements from the set:

{o′(ϕ), o′(⊥), o′(⊤), ¬(o′(ϕ)), ¬(o′(⊥)), ¬(o′(⊤)) | o′ ∈ O}.

We look at the modalities for our examples, and check which properties they satisfy.

E�ect-free: The termination modality ↓distributes over both non-empty disjunctions
and non-empty conjunctions, sinceM |=↓(ϕ) holds if and only if |M | = ⟨V ⟩ and V |= ϕ.
So with |M | = ⟨V ⟩, M |=↓ (

⋀︁
X) ⇔ V |=

⋀︁
X ⇔ ∀ϕ ∈ X.V |= ϕ ⇔ M |=

⋀︁
{↓ (ϕ) |

ϕ ∈ X}, and similarly for
⋁︁
X. Moreover, O∅ = {↓} allows for negation propagation

since ↓(¬(ϕ)) ≡ ¬(↓(ϕ))∧ ↓(⊤).

Error: The error modalities Ee trivially distribute over non-empty disjunctions and
conjunctions since Ee(ϕ) ≡ Ee(⊥), and hence Oer also allows for negation propagation
since Ee(¬(ϕ)) ≡ Ee(⊥).

Nondeterminism: The may modality ♢ distributes over non-empty disjunctions,
since M |= ♢(

⋁︁
X) holds if and only if |M | has a leaf ⟨V ⟩ such that there is a for-

mula ϕ ∈ X where V |= ϕ, which holds precisely if M |=
⋁︁
{♢(ϕ) | ϕ ∈ X}. The must

modality □ distributes over non-empty conjunctions, since M |= □(
⋀︁
X) holds if and

only if |M | if �nite and all leaves are values V where for any formula ϕ ∈ X it holds that
V |= ϕ. This holds precisely if M |=

⋀︁
{□(ϕ) | ϕ ∈ X}. None of the sets of modalities

for nondeterminism allow for negation propagation though.

Probability: The set of modalities Opr allows for negation propagation since
M |= P>q(¬(ϕ)) ≡

⋁︁
{P>p(⊤) ∧ ¬(P>(p−q)(ϕ)) | p ≥ q}. But most modalities neither

distribute over non-empty disjunctions nor over non-empty conjunctions.

Global store: The modalities (s↣ s′) distribute over non-empty disjunctions and
conjunctions since M |= (s↣ s′)(ϕ) holds if and only if exec(|M |, s) = (V, s′) where
V |= ϕ. So we can unfold the conjunctions and disjunctions at V . Moreover, Ogs allows
for negation propagation since (s↣r)(¬(ϕ)) ≡ ¬((s↣r)(ϕ)) ∧ (s↣r)(⊤).

Input/output: The modalities ⟨w⟩↓ distribute over non-empty disjunctions and con-
junctions since like in global store, M |= ⟨w⟩↓ (ϕ) depends on the satisfaction V |= ϕ

for a particular leaf V of |M |. The modalities ⟨w⟩... trivially distribute over non-empty
disjunctions and conjunctions since ⟨w⟩...(ϕ) ≡ ⟨w⟩...(⊥). Lastly, the set Oio allows
for negation propagation since ⟨w⟩ ↓ (¬(ϕ)) ≡ ¬(⟨w⟩ ↓ (ϕ)) ∧ ⟨w⟩ ↓ (⊤) and
⟨w⟩...(¬(ϕ)) ≡ ⟨w⟩...(⊥).

96 CHAPTER 5. LOGIC VARIATIONS

Timer: All the modalities for timer distribute over non-empty disjunction and con-
junctions for similar reasons as the modalities of input/output, and any of the sets of
modalities for timer allow for negation propagation since:

� C≤c(¬(ϕ)) ≡ C≤c(⊤) ∧ ¬(C≤c(ϕ)).

� C≥c(¬(ϕ)) ≡ C≥c(⊤) ∧ ¬(C≥c(ϕ)).

� C↑
>c(¬(ϕ)) ≡ C↑

>c(⊥).

5.2.2 Connective elimination results

Using the properties de�ned in the previous subsection, we prove how the logics (V)∗

and (V+)∗ can be reduced without changing the induced logical equivalences.

Lemma 5.2.5. Suppose O is a set of modalities such that all o ∈ O distribute over non-

empty disjunctions, then (⊑(O,
⋁︁
,
⋀︁
,¬)) = (⊑(O,⊥,

⋀︁
,¬)) and (⊑(O,

⋁︁
,
⋀︁
,+)) = (⊑(O,⊥,

⋀︁
,+)).

Proof. Let c ∈ {¬,+}, and take L = (O,
⋁︁
,
⋀︁
, c) and K = (O,⊥,

⋀︁
, c). We prove that

each formula ϕ... ∈ L (value or computation) is equivalent to a non-empty disjunction⋁︁
i∈I ψ...i over formulas ψ...i from K. We prove this by induction on ϕ....

1. If ϕ... = {n}, then ϕ... ∈ K and ϕ... ≡
⋁︁
{ϕ...}, so we are �nished.

2. If ϕ... = ⟨ϕ⟩, then by induction hypothesis, ϕ ≡
⋁︁
i∈I ϕi where all ϕi ∈ K.

Since ⟨
⋁︁
i∈I ϕi⟩ ≡

⋁︁
i∈I⟨ϕi⟩, we are �nished. For ϕ... ∈ {π0(ψ), π1(ϕ), (V ↦→

ϕ), (j ↦→ ϕ), o(ψ)}, the proof goes similarly.

3. If ϕ... = ⊥ or ϕ... = ⊤, note that ϕ... ≡
⋁︁
{ϕ...}, which is of the correct shape.

4. If ϕ... =
⋁︁
j∈J ϕ...j with J non-empty, we use the induction hypothesis and merge the

two disjunctions.

5. If ϕ... =
⋀︁
j∈J ϕ...j with J non-empty, we use the induction hypothesis to see that

ϕ... ≡
⋀︁
j∈J
⋁︁
i∈Ij ψi,j . We use Lemma 5.1.1 to put the formula in disjunctive normal

form, and note that countable conjunctions over K-formulas are still a K-formulas.

6. If ϕ... = ¬(ψ...), in which case c = ¬, we use the induction hypothesis and note
that ¬(

⋁︁
i∈I ϕ...i) ≡

⋀︁
i∈I ¬(ϕ...i) ≡

⋁︁
{
⋀︁
i∈I ¬(ϕ...i)}, where

⋀︁
i∈I ¬(ϕ...i) ∈ K (since all

ϕ...i ∈ K).

Satisfaction of disjunctions is completely determined by satisfaction of the subformulas
of the disjunction. So since moreover K ⊆ L, we conclude that (⊑L) = (⊑K).

Not all modalities distribute over disjunctions though. However, we can also reduce
the used size of disjunctions given that all the modalities are Scott open.

Lemma 5.2.6. Suppose O is a set of Scott-open modalities.

Then (⊑(O,
⋁︁
,
⋀︁
,¬)) = (⊑(O,∨,

⋀︁
,¬)) and (⊑(O,

⋁︁
,
⋀︁
,+)) = (⊑(O,∨,

⋀︁
,+)).

5.2. INFINITARY VS FINITARY VALUE FORMULA CONNECTIVES 97

Proof. A similar proof to that of Lemma 5.2.5, only changing the case where ϕ... = o(ψ).
Because of Scott continuity, o(

⋁︁
n∈N ψn) ≡

⋁︁
m∈N o(

⋁︁
n∈N,n<m ψn), where

⋁︁
n∈N,n<m ψn

is a �nite disjunction, and hence the case goes through.

We can dualize Lemma 5.2.5, adapting the proof accordingly.

Lemma 5.2.7. Suppose O is a set of modalities such that all o ∈ O distribute over non-

empty conjunctions, then (⊑(O,
⋁︁
,
⋀︁
,¬)) = (⊑(O,

⋁︁
,⊤,¬)) and similarly (⊑(O,

⋁︁
,
⋀︁
,+)) =

(⊑(O,
⋁︁
,⊤,+)).

Lastly, we can combine the two results to get rid of both connectives, if possible.

Lemma 5.2.8. Suppose O is a set of modalities such that all o ∈ O we distribute

over non-empty disjunctions and conjunctions, then (⊑(O,
⋁︁
,
⋀︁
,¬)) = (⊑(O,⊥,⊤,¬)) and

similarly (⊑(O,
⋁︁
,
⋀︁
,+)) = (⊑(O,⊥,⊤,+)).

Proof. Let c ∈ {¬,+}, and take L = (O,
⋁︁
,
⋀︁
, c) and K = (O,⊥,⊤, c). We prove by

induction that each formula ϕ... ∈ L (value or computation) is equivalent to a non-empty
disjunction of non-empty conjunctions

⋁︁
i∈I
⋀︁
j∈Ji ψ...i over formulas ψ...i from K. Note

that ϕ... ≡
⋁︁
{
⋀︁
{ϕ...}} to deal with the cases where ϕ... ∈ {⊤,⊥, {n}}. The rest of the proof

is similar to the proof of Lemma 5.2.5, requiring further transformations of formulas
into their disjunctive normal form where appropriate, using Lemma 5.1.1.

In case that moreover, the set of modalities allows for negation propagation, we can
also get rid of negation:

Lemma 5.2.9. Suppose O is a set of modalities which allows for negation propagation,

and such that all o ∈ O distribute over non-empty disjunctions and conjunctions, then

(≡(O,
⋁︁
,
⋀︁
,¬)) = (≡(O,⊤,⊥,+)).

Proof. Take L = (O,⊤,⊥,¬) and K = (O,
⋁︁
,
⋀︁
,+). We prove that each formula ϕ... ∈ L

(value or computation) is equivalent to
⋁︁
i∈I
⋀︁
j∈Ji ψ...i (all index sets non-empty), such

that each ψ...i is from K ∪ ¬K. This will be su�cient to derive the equality of logical
equivalences. We prove the statement by induction on ϕ....

1. If ϕ... = {n}, then ϕ... ∈ K and ϕ... ≡
⋁︁
{
⋀︁
{ϕ...}}, so we are �nished.

2. If ϕ... = ⟨ϕ⟩, then by induction hypothesis, ϕ ≡
⋁︁
i∈I
⋀︁
j∈Ji ϕi,j with ϕi,j ∈ K∪¬K.

Since ⟨
⋁︁
i∈I
⋀︁
j∈Ji ϕi,j⟩ ≡

⋁︁
i∈I
⋀︁
j∈Ji⟨ϕi,j⟩, and for any ψ; ⟨¬(ψ)⟩ ≡ ¬(⟨ψ⟩), we

get the desired result. For ϕ... ∈ {π0(ϕ), π1(ϕ), (V ↦→ ϕ), (j ↦→ ϕ)}, the proof is
similar.

3. If ϕ... = o(ψ), use the induction hypothesis to �nd ψ ≡
⋁︁
i∈I
⋀︁
j∈Ji ψi,j . So

o(
⋁︁
i∈I
⋀︁
j∈Ji ψi,j) ≡

⋁︁
i∈I
⋀︁
j∈Ji o(ψi,j) where ψi,j ∈ K ∪ ¬K. For ψ ∈ K, by

assumption o(¬(ψ)) is equivalent to some disjunction of conjunctions of elements
of K. So (using Lemma 5.1.1) ϕ... is equivalent to a formula of the right shape.

4. If ϕ... ∈ {⊤,⊥}, then ϕ... ≡
⋁︁
{
⋀︁
{ϕ...}}.

98 CHAPTER 5. LOGIC VARIATIONS

5. If ϕ... = ¬(ψ...), we can use the usual connective manipulation to get the right result.

There is a di�erent way to remove negations, even if the set of modalities does not
allow for negation propagation (e.g., in case of nondeterminism). This can be done by
replacing them with negative modalities. Given o ∈ O, we de�ne o¬ to be the modality
where Jo¬K = (T (1)−JoK). HenceM |= o¬(ϕ) ⇐⇒ M ̸|= o(ϕ). Let O¬ = {o¬ | o ∈ O}.
Note that the new modalities o¬ are not generally monotone.

Lemma 5.2.10. The relations (≡(O,
⋁︁
,
⋀︁
,¬)) and (≡(O∪O¬,

⋁︁
,
⋀︁
,+)) are the same. More-

over, if we add ¬({n}) as basic formulas to Form(N), then:

(≡(O,∨,∧,¬)) = (≡(O∪O¬,∨,∧,+)) and (≡(O,⊥,⊤,¬)) = (≡(O∪O¬,⊥,⊤,+)) .

Note that in all cases of the formulation of the lemma, the arity of disjunctions and
conjunctions match. This is due to the seventh item in the proof.

Proof. Let (a, b) ∈ {(
⋁︁
,
⋀︁
), (∨,∧), (⊥,⊤)}, L = (O, a, b,¬), and K = (O ∪O¬, a, b,+),

where we add ¬({n}) as basic formulas to K if a ̸=
⋁︁
. We do two separate inductions

on formulas.
First we prove that for each formula ϕ... ∈ K, there is a formula ψ... ∈ K such that

¬(ϕ...) ≡ ψ....

1. If ϕ... = {n}, then ¬(ϕ...) ≡
⋁︁
m∈N,m ̸=n{m}, which is in K in the case that we have

countable disjunction. In the other cases, with at most �nite or empty disjunctions
and conjunctions, we added ¬({n}) as a basic formula to K.

2. If ϕ... = ¬({n}) as basic formula, then ¬(ϕ...) ≡ {n} ∈ K.

3. If ϕ... = ⟨ϕ⟩, then by induction hypothesis there is a ψ ∈ K such that ¬(ϕ) ≡ ψ.
Hence ¬(ϕ...) = ¬(⟨ϕ⟩) ≡ ⟨¬(ϕ)⟩ ≡ ⟨ψ⟩ ∈ K.

4. For ϕ... = π0(ψ), ϕ... = π1(ψ), ϕ... = (i, ψ...), ϕ... = (V ↦→ ϕ) and ϕ... = (i ↦→ ϕ), the proof
goes similarly as in the previous case.

5. If ϕ... = o(ψ) where o ∈ O, then ¬(ϕ...) ≡ o¬(ψ) ∈ K.

6. If ϕ... = o¬(ψ) where o ∈ O, then ¬(ϕ...) ≡ o(ψ) ∈ K.

7. If ϕ... =
⋁︁
i∈I ϕ...i, then by induction hypothesis there is for each i ∈ I a formula

ψ...i ∈ K such that ¬(ϕ...i) ≡ ψ...i. Hence ¬(ϕ...) = ¬(
⋁︁
i∈I ϕ...i) ≡

⋀︁
i∈I ¬(ϕ...i) ≡

⋀︁
i∈I ψ...i ∈

K. The case where ϕ... =
⋀︁
i∈I ϕ...i has a dual proof. The above derivation works

even if I is empty.

8. If ϕ... = ¬(ψ...), then ¬(ϕ...) = ¬(¬(ψ...)) ≡ ψ... ∈ K.

5.2. INFINITARY VS FINITARY VALUE FORMULA CONNECTIVES 99

We now do an induction on ϕ... ∈ L, to prove that for each such ϕ... there is an
equivalent formula ψ... ∈ K. In this induction, all cases except the ϕ... = ¬(ψ...) case for
ϕ... follow directly, so we only need to prove that case explicitly. If ϕ... = ¬(ψ...), then by
induction hypothesis, there is a ψ...′ ∈ K such that ϕ... ≡ ¬(ψ...) ≡ ¬(ψ...′). By the previous
induction, there is a formula ϕ...′ ∈ K such that ¬(ψ...′) ≡ ϕ...

′, hence ϕ... ≡ ϕ...
′, and we are

�nished.
For the other direction, note that o¬(ϕ) ≡ ¬(o(ϕ)). So any formula ϕ... ∈ K is

equivalent to a formula or the negation of a formula in L (remember that there are no
connectives at computation formulas). We can conclude that each formula from L∪¬L
has an equivalent formula from K, and vice versa. So they induce the same logical
equivalence on the terms.

5.2.3 Logic characterisations for e�ect examples

Combining the properties of the modalities for our e�ect examples, and the results from
the previous subsection, we can reduce the logic in various ways without changing the
induced behavioural equivalence.

E�ect-free, error, global store, input/output and timer
Firstly, most examples of e�ects have a set of modalities which both allow for negation
propagation, and contain modalities which distribute both over non-empty disjunctions
and over non-empty conjunctions.

Proposition 5.2.11. For e�ect-free computation, error e�ect, global store e�ect, in-

put/output e�ect, and timer e�ect, the general behavioural equivalence ≡ (and hence

applicative O-bisimilarity) is equal to ≡(O,⊥,⊤,+), where O is the chosen set of modali-

ties for each e�ect.

Proof. As observed before, the modalities allow for negation propagation and distribute
over non-empty conjunctions and disjunctions. So we can apply Lemma 5.2.9 to get the
desired result.

Since applicative bisimilarity is equal to ≡, and mutual applicative similarity is
equal to ≡+, we have the following consequence.

Corollary 5.2.12. For e�ect-free computation, error e�ect, global store e�ect, in-

put/output e�ect, and timer e�ect, with the given set of modalities O, applicative O-

bisimilarity is equal to mutual applicative O-similarity.

The same can be said about some combinations of e�ects. In Section 5.3, we will
study which combinations of e�ects have an appropriate decomposable set of Scott open
modalities. We conjecture that if it is a combination containing only e�ects from the
three mentioned in Proposition 5.2.11, the logic can likewise be reduced to (O,⊥,⊤,+)

without changing the logical equivalence.

100 CHAPTER 5. LOGIC VARIATIONS

Nondeterminism
Unfortunately, the modalities for nondeterminism do not have many properties, except
for the fact that ♢ distributes over non-empty disjunctions and □ distributes over non-
empty conjunctions. So we can use Lemmas 5.2.5, 5.2.7 and 5.2.10 to derive that:

≡({♢},
⋁︁
,
⋀︁
,¬) = ≡({♢},⊥,

⋀︁
,¬) = ≡({♢,♢¬},

⋁︁
,
⋀︁
,+) ,

≡({□},
⋁︁
,
⋀︁
,¬) = ≡({□},

⋁︁
,⊤,¬) = ≡({□,□¬},

⋁︁
,
⋀︁
,+) ,

≡({♢,□},
⋁︁
,
⋀︁
,¬) = ≡({♢,♢¬,□,□¬},

⋁︁
,
⋀︁
,+) .

Probability
The probabilistic logic can be greatly simpli�ed. The proofs however are a bit more
involved, since the modalities do not simply distribute over the connectives. As such,
this result is not a consequence of previously established lemmas.

Proposition 5.2.13. (≡(Opr,
⋁︁
,
⋀︁
,¬)) = (≡(Opr,⊥,∧,+)) holds.

Proof. Let L = (Opr,
⋁︁
,
⋀︁
,¬) and K = (Opr,⊥,∧,+). We prove by induction that

each ϕ... ∈ L is equivalent to
⋁︁
i∈I
⋀︁
j∈Ji ϕ...i,j (with non-empty indexing sets) where

ϕ...i,j ∈ K ∪ ¬K. The proof is similar to the proof of Lemma 5.2.9. There is only one
non-trivial case.

Assume ϕ... = P>q(ψ), then by induction hypothesis, ψ ≡
⋁︁
i∈I
⋀︁
j∈Ji ϕi,j where

ϕi,j ∈ K ∪ ¬K. In �ve steps, we will show that ϕ... is equivalent to a series of conjunc-
tions, disjunctions and negations of formulas of the form P>q(ψ) (which we will call
a combination of formulas P>q(ψ)), where ψ is of an increasingly simpler shape. At
this stage, ψ =

⋁︁
i∈I
⋀︁
j∈Ji ϕi,j where ϕi,j ∈ K ∪ ¬K, but each step we will attempt to

simplify the shape of ψ by `unfolding' the connectives out of the modalities P>q.

(I) We prove that ψ can be of the shape ∨i∈I
⋀︁
j∈Ji ϕi,j with I �nite and ϕi,j ∈ K∪¬K.

Since P(|M |[|=
⋁︁
n∈N ϕn]) = limm→∞ P(|M |[|=

⋁︁
n∈N,n<m ϕn]) we observe the

equivalence P>q(
⋁︁
n∈N ψn) ≡

⋁︁
m∈N P>q(

⋁︁
n∈N,n<m ψn), where

⋁︁
n∈N,n<m is a �-

nite disjunction. So we can show that ϕ... is equivalent to a combination of formulas
of the form P>q(∨i∈I

⋀︁
j∈Ji ϕi,j) with ϕi,j ∈ K ∪ ¬K.

(II) We prove that ψ can be of the shape
⋀︁
j∈J ϕj where ϕj ∈ K ∪ ¬K.

Since P(|M |[|= ϕ∨ψ]) = P(|M |[|= ϕ])+P(|M |[|= ψ])−P(|M |[|= ϕ∧ψ]), we observe
P>q(ψ ∨ ψ′) ≡

⋁︁
a,b,c∈Q,a+b≥q+c P>a(ψ) ∧ P>b(ψ

′) ∧ ¬(P>c(ψ ∧ ψ′)). Using that
ψ∧(ψ′∨ψ′′) ≡ (ψ∧ψ′)∨(ψ∧ψ′′), we can unfold the �nite disjunction by applying
the above rule a �nite number of times. So ϕ... is equivalent to a combination of
formulas P>q(

⋀︁
j∈J ϕj) with ϕj ∈ K ∪ ¬K.

(III) We prove that ψ can be of the shape ∧j∈Jϕj with J �nite and ϕj ∈ K ∪ ¬K.
Since P(|M |[|=

⋀︁
n∈N ϕn]) = limm→∞ P(|M |[|=

⋀︁
n∈N,n<m ϕn]), we observe the

fact that P>q(
⋀︁
n∈N ψn) ≡

⋁︁
a∈Q,a>q

⋀︁
m∈N P>a(

⋀︁
n∈N,n<m ψn), where

⋀︁
n∈N,n<m

is a �nite disjunction (we use disjunction over a > q to avoid satisfying P≥q instead

5.2. INFINITARY VS FINITARY VALUE FORMULA CONNECTIVES 101

of P>q). So ϕ... is equivalent to a combination of formulas P>q(∧j∈Jϕj) where J is
�nite and ϕj ∈ K ∪ ¬K.

(IV) We prove that ψ can be ∨i∈I ∧j∈Ji ϕi,j with I and Ji �nite and ϕi,j ∈ K.
The formula ∧j∈Jϕj with ϕj ∈ K ∪ ¬K can be written in the form of ϕ1 ∧
· · · ∧ ψn ∧ ¬ψ′

1 ∧ · · · ∧ ¬ψ′
m with all formula ϕi and ψ′

j from K. This is
equivalent to α ∧ ¬β where α = (ψ1 ∧ · · · ∧ ψn) and β = (ψ′

1 ∨ · · · ∨ ψ′
m).

Since P(|M |[|= α ∧ ¬(β)] = P(|M |[|= α] − P(|M |[|= α ∧ β], we observe that
P>q(α ∧ ¬(β)) ≡

⋁︁
a,b∈Q,a≥q+b P>a(α) ∧ ¬P>b(α ∧ β). Now, α = (ψ1 ∧ · · · ∧ ψn),

and α ∧ β is by distributivity equivalent to a �nite disjunction of �nite con-
junction of formulas from K. So ϕ... is equivalent to a combination of formulas
P>q(∨i∈I ∧j∈Ji ϕj) where I and Ji is �nite and ϕi,j ∈ K.

(V) Lastly, we prove that ψ can be of the form ∧j∈Jϕj with J �nite and ϕj ∈ K.
This can be done by simply applying step (II) again. So ϕ... is equivalent to a
combination of formulas P>q(∧j∈Jϕj) where J is �nite and ϕj ∈ K.

We can �nally conclude that ϕ... is equivalent to some series of disjunctions, conjunctions,
and negations of formulas from K (since if all ϕj ∈ K, then P>q(∧j∈Jϕj) ∈ K). Using
Lemma 5.1.1, we can �nd an equivalence ϕ... ≡

⋁︁
i∈I
⋀︁
j∈Ji ψ...

′
i,j where ψ...

′
i,j ∈ K∪¬K, and

we are done with this case.
This completes the induction, so we now know that each ϕ... ∈ L is equivalent to⋁︁

i∈I
⋀︁
j∈Ji ϕ...i,j where ϕ...i,j ∈ K ∪ ¬K. Since also (Opr,⊥,∧,+) ⊆ (Opr,

⋁︁
,
⋀︁
,¬) we can

conclude that (≡(Opr,
⋁︁
,
⋀︁
,¬)) = (≡(Opr,⊥,∧,+)).

In particular, this means:

Corollary 5.2.14. For the e�ect of probability, (⊑+) ∩ (⊑+)op = (≡). In particular,

this means that mutual applicative O-similarity is equal to applicative O-bisimilarity.

Similar results as the ones given above are featured in [12], where it is shown that
a simple testing logic is su�cient for characterising applicative bisimilarity for a prob-
abilistic lambda calculus. This testing logic is very similar to the logic (Opr,⊤,∧,+).

5.2.4 Contextual preorder

The contextual preorder is an important relation, and is used as the default notion of
program equivalence in most places in the literature. In this section we look at the cir-
cumstances under which the positive behavioural preorder coincides with the contextual
preorder. In such cases, the general behavioural preorder, which is equal to the gen-
eral behavioural equivalence, coincides with contextual equivalence. These coincidences
can be proven using the reduced logical characterisations of the positive behavioural
preorder established in this section. In particular, in the case that connectives can be
removed completely from the logic, the coincidence can be shown as long as modalities
can be suitably formulated in terms of contexts.

102 CHAPTER 5. LOGIC VARIATIONS

De�nition 5.2.15. The contextual preorder ⋐ is the largest compatible relation satis-
fying basic observations on ground type, in particular:

∀M,N ∈ Terms(F1). M ⋐ N ⇐⇒ |M | ≼ |N | .

Note the use of the preorder ≼ on T1 from De�nition 3.3.13, which can be alterna-
tively characterised by t ≼ r ⇐⇒ (∀o ∈ O, t ∈ JoK ⇒ r ∈ JoK) from (3.2) for all of our
examples. Importantly, if ⊑+ is compatible and P... ⊑+ R... holds, then P... ⋐ R... since ⋐ is
the largest compatible relation.

In the next result we use the notion of context, which is a program C[−] of some type
E... with a hole of some type F... such that for any P... ∈ Terms(F...), C[P...] is the program
of type E... resulting from plugging P... into each hole (−) of C. We use the fact resulting
from compatibility of ⋐, that for any type E..., and any context C[−] of type F1 with a
hole of type E..., that ∀P..., R... ∈ Terms(E...). P... ⋐ R... =⇒ C[P...] ⋐ C[P...] =⇒ |C[P...]| ≼ |R...|.

In order to prove that the positive behavioural preorder is equal to the contextual
preorder, we show that satisfaction of any formula can be represented as a set of tests
consisting of pairs (o, C[−]) of modalities and contexts. However, to be able to do this,
the set O needs to be su�ciently expressive. Though some properties of modalities
which imply the coincidence between these two preorders can be identi�ed, it is di�cult
to �nd properties general enough to work for all examples (the most problematic one
being global store). Identifying the general requirement for proving the coincidence may
be an interesting endeavour for the future.

Proposition 5.2.16. For the e�ects of error, input/output and global store with �nite

store locations; P... ⋐ R... i� P... ⊑(O,⊥,⊤,+) R....

Proof. Firstly, since ⊑(O,⊥,⊤,+) is compatible, P... ⊑(O,⊥,⊤,+) R... =⇒ P... ⋐ R....
The other implication is established using pairs (o, C[−]) consisting of a modality

and a context in which to check the modality. For each formula ϕ..., we will de�ne a set
G(ϕ...) of such pairs, such that:

P... |= ϕ... ⇐⇒ ∀(o, C[−]) ∈ G(ϕ...), |C[P...]| ∈ JoK.

Because formulas are well-founded, and every constructor of the logic (O,⊥,⊤,+) is
unary, each formula can be seen as a �nite unary tree, a list. So with induction on ϕ...,
we will construct G(ϕ...) such that the above statement holds. To start with, we need a
base modality β ∈ O such that ⟨∗⟩ ∈ JβK and ⊥ /∈ JβK. This is used to check atomic
formulas. In general, we can de�ne the following:

1. G({0}) := {(β, case (−) of {return(∗),S(x) ⇒ Ω})}.

2. G({n+ 1}) := {(β, case (−) of {Ω,S(x) ⇒ C[x]}) | (o, C[−]) ∈ G({n})}.

3. G(⟨ϕ⟩) := {(o, C[force(−)]) | (o, C[−]) ∈ G(ϕ)}.

4. G((i, ϕ)) := {(o, pm (−) as {Ω, . . . ,Ω, (i.x).C[x],Ω, . . . ,Ω}) | (o, C[−]) ∈ G(ϕ)}.

5.2. INFINITARY VS FINITARY VALUE FORMULA CONNECTIVES 103

5. G(π0(ϕ)) := {(o, pm (−) as (x, y).C[x]) | (o, C[−]) ∈ G(ϕ)}.

6. G(π1(ϕ)) := {(o, pm (−) as (x, y).C[y]) | (o, C[−]) ∈ G(ϕ)}.

7. G((V ↦→ ϕ)) = {(o, C[(−) V]) | (o, C[−]) ∈ G(ϕ)}.

8. G((i ↦→ ϕ)) := {(o, C[(−) i]) | (o, C[−]) ∈ G(ϕ)}.

9. G(⊥) := {(β,Ω)}.

10. G(⊤) := {(β, return(∗))}.

For the de�nition of G(o(ϕ)), we need to look at the speci�c e�ects.
Error: Here we take β := ↓ as the neutral modality.

11. G(Ee(ϕ)) := {(Ee, (−) to x. return(∗))}.

12. G(↓ (ϕ)) := {(↓, (−) to x. return(∗))} ∪ {(o, (−) to x.C[x]) | (o, C[−]) ∈ G(ϕ)}.

I/O: Here we take β := ⟨ε⟩↓.

11. G(⟨v⟩...(ϕ)) := {(⟨v⟩..., (−) to x. return(∗))}.

12. G(⟨v⟩↓ (ϕ)) := {(⟨v⟩↓, (−) to x. return(∗))}
∪ {(⟨vw⟩i, (−) to x.C[x]) | (⟨w⟩i, C[−]) ∈ G(ϕ)}.

Global store: Here we take β := (o↣o) as the neutral modality, where o ∈ State

is the always zero state (we could have used any state). Assume that there are only
�nitely many locations for storing numbers. For any state s we de�ne Ss for the program
which updates the global store to s and returns ∗. These programs can only exist if
there are �nitely many locations.

G((s↣r)(ϕ)) := {((s↣r), (−) to x. return(∗))} ∪

{((s↣b), (−) to x. Sa;C[x]) | ((a↣b), C[−]) ∈ G(ϕ)}

We can conclude that for the following examples of e�ects, it holds that the be-
havioural preorder is identical to the O-contextual preorder, where O is the appropriate
set of modalities.

Pure: (Σ∅,O∅) Error: (Σer,Oer)

Input/Output: (Σio,Oio) Global store: (Σgs,Ogs), with �nite Loc.

In the above cases of e�ect examples, it also holds that the behavioural equivalence
coincides with the contextual equivalence. This is because the contextual equivalence
is equal to the mutual contextual preorder in these cases. It should also be noted that
in [12], it has been proven that for the e�ect of probability, applicative bisimilarity
coincides with contextual equivalence, though the programming language studied there
is slightly di�erent.

104 CHAPTER 5. LOGIC VARIATIONS

5.3 Combining e�ects

In this section we look at examples of possible combinations of e�ects for which we can
�nd a decomposable set of Scott open modalities, which adequately characterises the
behavioural properties of such combinations of e�ects. Combining e�ects will however
turn out to be a lot easier in the quantitative logic of Chapter 6, so we will not explore
all possible combinations here.

Given some combination of e�ects, we need to choose a set of modalities which
describe the behaviour of such e�ects. In most cases, we add a new e�ect to an already
existing set of e�ects with modalities, and modify those existing modalities to also
incorporate the behaviour of the newly added e�ect. Such modi�cations do not always
result in modalities with the right properties, and can only be done in speci�c instances.
As such, we do not propose a uniform method for combining e�ects. In fact, as seen in
Subsection 3.5.4, some combinations are not possible in the Boolean logic.

For several combinations of e�ects, we will de�ne a set of modalities O, and we will
prove that O has the right properties: Is it a decomposable set of Scott open modalities?
The Scott open property for modalities is usually easily established. It is establishing
the property of decomposability which creates the most problems, and cannot always
be done. To this end, we �rst establish some general properties su�cient to prove that
certain combinations of e�ects have decomposable sets of modalities.

De�nition 5.3.1. O is unidecomposable if for any t ∈ T (T (1)) and o ∈ O with
µt ∈ JoK, there are o′, o′′ ∈ O such that t ∈ o′(o′′({∗})) and for all r ∈ T (T (1)),
r ∈ o′(o′′({∗})) =⇒ µr ∈ JoK.

This is a stronger property than strong decomposability (De�nition 3.3.25). For
example, the set of modalities Opr for the e�ect of probability is strongly decomposable,
but not unidecomposable. Error, input/output, global store, angelic/demonic/neutral
nondeterminism, and timer all have unidecomposable sets of modalities, which is directly
established by the proofs of Subsection 3.3.3.

De�nition 5.3.2. A branch-tree is a tree t ∈ T (X) such that for any pair of smaller
trees t0 ≤ t and t1 ≤ t, either t0 ≤ t1 or t1 ≤ t0.

This means the tree never has more than one continuation not labelled ⊥, it only
has one unique branch when excluding ⊥ leaves. In other words, each node has at most
one non-⊥ child. Moreover, if t is a branch-tree and r ≤ t, then r is a branch-tree. See
Figure ?? for an example of a branch tree.

De�nition 5.3.3. A modality o is single-branched if for any t ∈ JoK there is a branch-
tree t′ ≤ t below t such that t′ ∈ JoK.

Note that if o is also Scott open, the branch-tree t′ can be chosen to be �nite. Examples
of e�ects where all modalities are single-branched (considering the standard choice of
modalities) include: Error, Angelic nondeterminism, Global Store and Input/Output.
The modalities for probability and demonic nondeterminism are not single-branched.

5.3. COMBINING EFFECTS 105

read

0

1
2

n

⊥ or ⊥ . . . ⊥

⊥ ⟨∗⟩

Figure 5.1: Example of a branch-tree.

We �rst look at combining sets of modalities over the same set of e�ect opera-
tors. Recall Corollary 3.3.24, which shows that decomposability of sets of modalities
is preserved by union. This has some interesting applications. For example, if we can
consider the □ modality of must termination for the probabilistic binary choice operator
(which is not expressible in terms of the probabilistic modalities Opr

1). The extended
set Opr∪{□} is also a decomposable set of Scott open modalities, which gives a di�erent
notion of behavioural equivalence for probabilistic languages then Opr.

Another application of this proposition is that to any decomposable set of Scott
open modalities, we can add the termination modality ↓, with denotation J↓K := {⟨∗⟩},
which observes that a computation has terminated without encountering any e�ectful
behaviour. The resulting set of modalities is still decomposable. We may similarly add
a modality ±, with denotation J±K := T (1)−{⊥}, which checks that if a computation
diverges, it has at least encountered some e�ectful behaviour. The resulting set of
modalities is still decomposable since: ∀t ∈ T (T (1)), µt ∈ ±({∗}) ⇐⇒ t ∈ ±(±{∗}).

5.3.1 Combinations with error messages

Error messages can be added to any e�ects. Let (Σ,O) be the signature and modalities
for one or more e�ects. Take Err to be a set of error messages we want to add, and
let ΣErr := Σ ∪ {raisee() | e ∈ Err} (disjoint union). A modality on ΣErr is speci�ed by
a subset G ⊆ Err of observed error messages. Such a subset gives us a transformation
G : TΣErr(1) → TΣ(1) de�ned recursively as follows:

G(⊥) := ⊥
G(⟨∗⟩) := ⟨∗⟩.
G(raisee()) := ⟨∗⟩, if e ∈ G, else ⊥.
G(opl1,...,ln⟨t0, t1, . . . ⟩) := opl1,...,ln⟨G(t0), G(t1), . . . ⟩, for op ∈ Σ.

We de�ne a new set of modalities by:

OErr := {(o)∈G | G ⊆ Err, o ∈ O}.

where M |= (o)∈G(ϕ) ⇐⇒ G(|M |[|= ϕ]) ∈ JoK. The denotation is given by J(o)∈GK =

G
−1

(JoK). Note that t ∈ (o)∈G(∅) ⇐⇒ t ∈ (o)∈∅(∅).
1J□K is not equal to

⋂︁
q∈Q,q<1JP>qK, as the former tests sure termination while the latter tests

almost-sure termination.

106 CHAPTER 5. LOGIC VARIATIONS

For each of the modalities o, (o)∈G treats error messages of G as if they are ter-
minating computations. E.g. M |= (□)∈G(ϕ) holds if the computation M must either
return a value satisfying ϕ or raise an error e ∈ G. In particular, M |= (□)∈G(⊥) if it
must raise an error from G.

Lemma 5.3.4. If o is Scott open, then (o)∈G is Scott open.

Proof. This is a consequence of the continuity of the function G.

Lemma 5.3.5. If O is a decomposable set of upwards closed modalities, then OErr is

decomposable.

Proof. Since we need to deal with double trees, we de�ne a variation of G, a functionˆ︁G : TΣErr(TΣErr(1)) → TΣ(TΣ(1)) de�ned by:ˆ︁G(⊥) := ⊥,ˆ︁G(⟨t⟩) := ⟨G(t)⟩,ˆ︁G(raisee()) := ⟨⟨∗⟩⟩ = η(η(∗)) if e ∈ G, otherwise ⊥,ˆ︁G(op(t0, t1, . . .)) := op(ˆ︁G(t0), ˆ︁G(t1), . . .) for op ∈ Σ.

The function is chosen s.t. for t ∈ TΣErr(TΣErr(1)) we have G(µt) = µ(ˆ︁G(t)). We
distinguish between ≼ and ≼Err, the basic preorders for (Σ,O) and (ΣErr,OErr) respec-
tively. Note that a ≼Err b ⇐⇒ ∀G ⊂ Err, G(a) ≼ G(b). As a consequence, we have
(≼Err↑[(G

−1
(A))]) ⊆ G

−1
(≼↑[A]). We prove the statement of decomposability given by

Lemma 3.3.19.
Assume the following, for any t, r ∈ TΣErr(TΣErr(1)), ∀o′ ∈ OErr and ∀A ⊆ TΣErr(1):

(I) If t ∈ o′(A) then r ∈ o′(≼Err↑[A]).

For (o)∈G ∈ OErr, assume µt ∈ J(o)∈GK, hence µ(ˆ︁G(t)) ∈ JoK. We want to prove that
µr ∈ J(o)∈GK by using the decomposability of O for the trees ˆ︁G(t) and ˆ︁G(r). We prove
that the decomposability precondition ˆ︁G(t) ⋞ ˆ︁G(r) holds:

Let δ ∈ O and A ⊆ TΣ(1) such that ˆ︁G(t) ∈ δ(A). There are two cases for A,
depending on whether ⟨∗⟩ is in A.

1. If ⟨∗⟩ ∈ A, then errors from G raised in the `�rst' part of t (before return-
ing a tree) are acceptable, so t ∈ (δ)∈G(G

−1
(A)). Using assumption (I) we

get r ∈ (δ)∈G(≼Err↑[G
−1

(A)]). Using upwards closure of δ, we establish that
r ∈ (δ)∈G(G

−1
(≼↑[A])), hence G(r[∈ G

−1
(≼↑[A])]) ∈ JδK. We can conclude thatˆ︁G(r) ∈ δ(≼↑[A]) (since ⟨∗⟩ ∈ (≼↑[A])).

2. If ⟨∗⟩ /∈ A, then errors from G raised in the `�rst' part of t (before returning
a tree) are unacceptable, so t ∈ (δ)∈∅(G

−1
(A)). Using assumption (I) we get

r ∈ (δ)∈∅(≼
Err↑[G

−1
(A)]). Using upwards closure of δ, we establish that r ∈

(δ)∈∅(G
−1

(≼↑[A])). Regardless of whether ⟨∗⟩ ∈ (≼↑[A]), we get from upwards
closure of δ that ˆ︁G(r) ∈ δ(≼↑[A]).

5.3. COMBINING EFFECTS 107

Having proven that ˆ︁G(t) ⋞ ˆ︁G(r), so by decomposability we know that µ(ˆ︁G(t)) ≼
µ(ˆ︁G(r)). Hence µ(ˆ︁G(t)) ∈ JoK implies µ(ˆ︁G(r)) ∈ JoK, so G(µr) ∈ JoK and we conclude
that µr ∈ J(o)∈GK. So we know that OErr is decomposable.

When combining error and global store, the �nal state when an error is
raised remains observable by a behavioural property. For example, the com-
putations updatel(return(0); raisee()) of type FN is considered di�erent from
updatel(return(1); raisee()). The de�nition of error + global store could however be
manually altered to obscure this information, and still create a decomposable set of
modalities. In the quantitative logic of Chapter 6, such combinations are more easily
tweaked. See for example the discussion in Subsection 6.2.7.

5.3.2 Combinations with angelic nondeterminism

It is possible to combine angelic nondeterminism with any e�ect which has a unidecom-
posable set of Scott open modalities. Let (Σ,O) be the signature and an accompanying
set of modalities. Take ΣAor := Σ ∪ {or}, with a minor abuse of notation as we should
formally take the disjoint union.

A strategy is a function which chooses for each or node in a tree TΣAor(X) a resolution:
do we go left or right? We formalise this by saying a strategy is a function ρ : N∗ → {l, r}
from lists of natural numbers to a choice between left l and right r. With the set of
strategies Str := (N∗ → {l, r}), we de�ne a function ˆ︃(−) : Str → (TΣAor(X) → TΣ(X)),
which sends ρ to a function ˆ︁ρ : TΣAor(X) → TΣ(X) resolving in a tree t ∈ TΣAor(X)

all nondeterministic choices according to the strategy, resulting in a tree ˆ︁ρ(t) ∈ TΣ(X).
This is done according to the following rules (where ε ∈ N∗ is the empty list, and (m)s

is adding m to the front of list s):

ˆ︁ρ(⟨x⟩) = ⟨x⟩

ˆ︁ρ(⊥) = ⊥

ˆ︁ρ(or(t0, t1)) = ˆ︂(λv.ρ((0)v))(t0) if ρ(ε) = l.

ˆ︁ρ(or(t0, t1)) = ˆ︂(λv.ρ((1)v))(t1) if ρ(ε) = r.

ˆ︁ρ(op(l1, . . . , ln,m ↦→ tm)) = op(l1, . . . , ln,m ↦→ ˆ︂(λv.ρ((m)v))(tm)), for op ∈ Σ.

Note that the arity of the operation op above may be �nite.
By continuity we have ˆ︁ρ(⊔iti) = ⊔iˆ︁ρ(ti). We de�ne the set of modalities:

OAor := {(o)♢ | o ∈ O}, where J(o)♢K :=
⋃︂
ρ∈Str

ˆ︁ρ−1(JoK)

So M |= ((o)♢)[ϕ] :⇐⇒ ∃ρ ∈ Str.ˆ︁ρ(|M |[ϕ]) ∈ JoK.2 For the rest of this subsection, we
will simply write ρ to mean the function ˆ︁ρ.

2It holds that (♢)∈{e} is isomorphic to (Ee)♢.

108 CHAPTER 5. LOGIC VARIATIONS

Lemma 5.3.6. If o is Scott open, then (o)♢ is Scott open.

Proof. ⊔iti ∈ J(o)♢K ⇒ ⊔iti ∈
⋃︁
ρ ρ

−1(JoK) ⇒ ∃ρ, ρ(⊔iti) ∈ JoK ⇒ ∃ρ,⊔iρ(ti) ∈ JoK ⇒
∃ρ,∃i, ρ(ti) ∈ JoK ⇒ ∃i, ti ∈ J(o)♢K.

Lemma 5.3.7. If O is a unidecomposable set of upwards closed modalities, then OAor

is unidecomposable.

Proof. Let t ∈ TΣAor(TΣAor(1)) such that µt ∈ J(o)♢K. Hence there is a ρ such that
ρ(µt) ∈ JoK. There is a ρ′ for t (simply given by ρ) and for each leaf x a ρx (dependent
on the location of x in t) such that µ(ρ′(t[x ↦→ ρx(x)])) = ρ(µt). The replacement
of x in t[x ↦→ ρx(x)] is also dependent on the location of x in t. We use that O is
unidecomposable to get o′, o′′ ∈ O such that:

ρ′(t[x ↦→ ρx(x)]) ∈ o′(o′′({∗})) and ∀k ∈ TΣ(TΣ(1)), k ∈ o′(o′′({∗})) =⇒ µk ∈ JoK.

From ρ′(t[x ↦→ ρx(x)]) ∈ o′(o′′({∗})) and upwards closure of o′ we derive
t ∈ (o′)♢((o

′′)♢({∗})). If r ∈ (o′)♢((o
′′)♢({∗})) then there is a strategy ρ′r for

r and for each leaf y of r a strategy ρ′y (dependent on the location of y in r)
such that ρ′r(r[y ↦→ ρ′y(y)]) ∈ o′(o′′({∗})). By choice of o′ and o′′ it holds that
µ(ρ′r(r[y ↦→ ρ′y(y)])) ∈ JoK, moreover there is a strategy ρr such that ρr(µr) =

µ(ρ′r(r[y ↦→ ρ′y(y)])). We can conclude that ρr(µr) ∈ JoK and hence µr ∈ J(o)♢K.

One can combine angelic nondeterminism with probability in a similar manner,
and get behaviourally meaningful modalities. Though as seen in Subsection 3.5.4, this
combination of e�ects is problematic. So the resulting set of modalities is not suitable
for describing a behavioural equivalence for this combination of e�ects.

5.3.3 Combinations with timer e�ect

We can also add the timer e�ect to some of the other e�ects. We will focus on the
down-interpretation of timer e�ects, with O↓

ti, where the modalities C≤q are testing
whether a computation has terminated in a set amount of time q. The combination
with timer works most easily when the other e�ects have single-branched modalities
(De�nition 5.3.3), which include error, global store, input/output and angelic nonde-
terminism.

Let (Σ,O) be some other signature with modalities. For the timer e�ect, we choose
a countable set Inc of rational delays, constructing a signature (formally disjoint union):

ΣTim := Σ ∪ {tickc(−) : α→ α | c ∈ Inc}.

We develop a time-out pruner ν : TΣTim(X) × Q → TΣ(X) which given (t, q), goes
through the evaluation of the tree t removing tick nodes and pruning subtrees (replacing
it with ⊥) when the sum of time delays given by the removed tick nodes along some
evaluation branch exceeds q. We give a formal de�nition:

ν(⊥) := ⊥.

5.3. COMBINING EFFECTS 109

ν(⟨x⟩, q) := ⟨x⟩.

ν(tickc(t), q) :=

⎧⎨⎩ν(t, q − c) if q ≥ c

⊥ otherwise
.

ν(opl1,...,ln⟨t1, t2, . . . ⟩, q) := opl1,...,ln⟨ν(t1, q), ν(t2, q), . . . ⟩.

Given this map we de�ne for each modality o ∈ O and rational time duration q ∈ Q
a new modality (o)≤q such that:

M |= (o)≤q(ϕ) : ⇐⇒ ν(|M |, q) ∈ JoK

with the denotation J(o)≤qK := ν−1(JoK×{q}). Note that if q ≤ q′ holds, then J(o)≤qK ⊆
J(o)≤q′K. We de�ne the new set of modalities as OTim := {(o)≤q | o ∈ O, q ∈ Q}.

If for example we combine the e�ect-free language with the timer e�ect, we get that
the resulting set of modalities OTim

∅ is isomorphic to the set of modalities O↓
ti from the

down-interpretation of timer.
These new modalities are obviously Scott open if the original modalities were Scott

open, because of the continuity of the time-out pruner function. We now look at the
proof of decomposability for this set of modalities.

For a double tree t ∈ T (T (X)) we can de�ne a branch-tree substructure as a branch-
tree t′ ∈ T (T (X)), which has at most one non-trivial leaf a given by a branch-tree,
such that for some b ∈ T (X): t′[a ↦→ b] ≤ t and a ≤ b. Equivalently, a branch-tree
substructure of t is a double tree t′ ∈ T (T (X)) such that µt′ is a branch tree below µt,
and t′[∈ T (X)] ≤ t[∈ T (X)].

Proposition 5.3.8. If O is a unidecomposable set of single-branched upwards closed

modalities, then OTim is unidecomposable.

Proof. Let t ∈ TΣTim(TΣTim(X)) such that µt ∈ J(o)≤qK, then ν(µt, q) ∈ JoK. Since o is
single-branched, there is a branch-tree b ≤ ν(µt, q) such that b ∈ JoK. Let r ≤ µt be the
branch-tree such that b = ν(r, q). Let t′ be the branch-tree substructure of t such that
µt′ = r, hence ν(µt′, q) = b. Since µt′ is a branch-tree, its execution follows a single
sequence of tick operators. So there must be q′ and q′′ ∈ Q, upper bounds to the sum
of the ticks before termination and after termination respectively, such that q′ + q′′ = q

and µ(ν(t′[a ↦→ ν(a, q′′)], q′)) = b ∈ JoK.
Since O is unidecomposable, we can �nd appropriate o′ and o′′ ∈ O such that

ν(t′[a ↦→ ν(a, q′′)], q′) ∈ o′(o′′({∗})), and hence t′ ∈ o′≤q′(o
′′
≤q′′({∗})). Now, if it

holds that r ∈ o′≤q′(o
′′
≤q′′({∗})), then ν(r[a ↦→ ν(a, q′′)], q′) ∈ o′(o′′({∗})) so as a

consequence of uni-strong decomposability, µ(ν(r[a ↦→ ν(a, q′′)], q′)) ∈ JoK. Hence
with ν(µr, q′ + q′′) ≥ µ(ν(r[a ↦→ ν(a, q′′)], q′)) and by upwards closure of o, we get
ν(µr, q) ∈ JoK, so µr ∈ J(o)≤qK.

This approach to combining e�ects with timer e�ects can also be used to add time
delays to already existing e�ect operators. For instance, in combination with angelic
nondeterminism, we can let the binary or operator take a set amount of time. One can
then adapt the time-out pruner function to modify the set of modalities similar to what
is done above.

110 CHAPTER 5. LOGIC VARIATIONS

5.3.4 Combinations with probability

We tie up some loose ends by looking at some combinations with probability. In par-
ticular, combinations of probability with global store and input/output are possible,
because when testing the satisfaction of a modality for these e�ects, only one speci�c
branch needs to be checked. We will call such modalities branch-focussed, a concept
that is formulated in De�nition 5.3.9.

Given a signature Σ and a set of modalities O, we de�ne a new set of modalities O′

on Σ′ = Σ ∪ {pr} (formally disjoint union). Consider {l, r}∗, the set of lists of choices
between left and right. There is a function K : {l, r}∗ → (TΣ′(X) → T (X)) resolving
the probabilistic choice of a tree t ∈ TΣ′(X) by a series of choices v ∈ {l, r}∗ in the
following way:

K(v)(⊥) := ⊥.
K(v)(⟨a⟩) := ⟨a⟩.
K(ε)(pr(t, r)) := ⊥.
K((l)v)(pr(t, t′)) := K(v)(t).
K((r)v)(pr(t, t′)) := K(v)(t′).
K(v)(op(l1, . . . , ln,m ↦→ tm)) := op(l1, . . . , ln,m ↦→ K(v)(tm)) for op ∈ Σ.

Given a Scott open modality o ∈ O, we can now de�ne the associated probability
function Po : TΣ′({∗}) → [0, 1] by calculating for t ∈ TΣ′({∗}) the `probability' of
{v ∈ {l, r}∗ | K(v)(t) ∈ o({∗})}. Formally, we de�ne for each n ∈ N a function n̂ :

{l, r}n → {l, r}∗ sending n-tuples to their respective lists of length n. Then we de�ne
Pon : TΣ′({∗}) → [0, 1] as Pon(t) = #{s ∈ {l, r}n | K(n̂(s))(t) ∈ o({∗})}/2n. Since for
v ∈ {l, r}∗ an initial segment of v′ ∈ {l, r}∗, K(v)(t) ≤ K(v′)(t), and o is upwards
closed, we know that the sequence {Pon(t)}n∈N is monotone increasing. So we can de�ne
Po(t) as limn∈N Pon(t).

Given a modality o ∈ O and a rational q ∈ [0, 1], we de�ne a modality o>q on Σ′

denoted by Jo>qK := {t ∈ TΣ′({∗}) | Po(t) > q}. For example, in the case of the e�ect-
free language with O = O∅ = {↓}, the modality (↓)>q is isomorphic to P>q. We now
de�ne our new set of modalities on Σ′ as O′ := {o>q | o ∈ O, q ∈ [0, 1]∩Q}. This set of
modalities is well-de�ned for any set of upwards closed modalities O. However, it does
not generally hold that for any decomposable set of Scott open modalities O, the new
set of modalities O′ is decomposable.

We identify two properties on the set of modalities O su�cient for proving that the
new set of modalities O′ for the combination of e�ects with probability is decomposable.
These properties may not be exhaustive, though they do enable us to prove that the
global store and input/output e�ects can be combined with probability.

De�nition 5.3.9. A modality o ∈ O is branch-focussed if for any t ∈ JoK, there is a
unique branch-tree b ≤ t such that b ∈ JoK.

The main function of this property is to establish that satisfaction of a modality
depends on one branch only. Examples of sets of branch-focussed modalities are the
modalities for global store, input/output and timer. An example of a modality which is

5.3. COMBINING EFFECTS 111

not branch-focussed is the may modality ♢ for nondeterminism, even though it is single
branched.

De�nition 5.3.10. O is disjointly unidecomposable if for any o ∈ O, there is a family
of pairs of modalities {(oi, o′i)}i∈I such that:

1. ∀i ∈ I, t ∈ TT1, t ∈ oi(o
′
i({∗})) =⇒ µt ∈ o({∗}).

2. ∀t ∈ TT1, µt ∈ o({∗}) =⇒ ∃i ∈ I, t ∈ oi(o
′
i({∗})).

3. ∀i, j ∈ I, i ̸= j =⇒ oi(o
′
i({∗})) ∩ oj(o′j({∗})) = ∅.

We show that the modalities of two examples of e�ects satisfy this property.

Global store: For any modality (s↣s′) ∈ Ogs, the family of pairs of modalities given
by the set {((s↣s′′), (s′′↣s′)) | s′′ ∈ State} has the desired properties.

Input/output: For the modality ⟨v⟩↓∈ Oio, the family of pairs of modalities given
by the set {(⟨w⟩↓, ⟨w′⟩↓) | w,w′ i/o-traces, ww′ = v} has the desired properties, and for
the modality ⟨v⟩... ∈ Oio, the set {(⟨w⟩↓, ⟨w′⟩...) | w,w′ i/o-traces, w′ ̸= ε ∧ ww′ = v} ∪
{(⟨v⟩..., ⟨ε⟩...)} has the desired properties.

Note that the error e�ect also satis�es this property, but we do not include it here
since we have already shown that we can do combinations with the error e�ect. It is
however interesting to note that (Ee)>q is isomorphic to (P>q)∈{e}.

We can now give the main result of this subsection.

Proposition 5.3.11. If O is a disjointly unidecomposable set of Scott open and branch-

focussed modalities, then O′ is a strongly decomposable set of Scott open modalities.

Scott openness is relatively straightforward to verify, so we will not go into the proof
of that property. We will focus on sketching the proof of the fact that O′ is strongly
decomposable given the conditions laid out in the proposition.

Proof sketch. Suppose for t ∈ TΣ′(TΣ′({∗})) and o>q ∈ O′, it holds that t ∈ Jo>qK. Take
{(oi, o′i)}i∈I to be the set given to us by disjoint uni-decomposability on o ∈ O. We
prove that the set {((oi)>p, (o′i)>p′) | i ∈ I, p, p′ ∈ [0, 1] ∩ Q, t ∈ (oi)>p((o

′
i)>p′({∗}))}

has the properties required by strong decomposability in De�nition 3.3.25 (note that
property 1 holds trivially). This proof is similar to the proof that the set of modalities
for probability is strongly decomposable.

If t ∈ Jo>qK, then there is an n ∈ N such that Pon(µt) > q, hence
#{s ∈ {l, r}n | K(n̂(s))(µt) ∈ o({∗})} > q · 2n. Take one such s ∈ {l, r}n such that
K(n̂(s))(t) ∈ o({∗}). Since o is branch focussed, there is a unique branch-tree
rs ≤ K(n̂(s))(µt) such that rs ∈ o({∗}). We can �nd a branch-tree substructure
ts of t such that K(n̂(s))(µts) = rs. Moreover, we can split up n̂(s) into two
lists v and w, such that vw = n̂(s) and µ(K(v)(K(w)∗(ts))) = rs. Considering

112 CHAPTER 5. LOGIC VARIATIONS

µ(K(v)(K(w)∗(ts))) ∈ JoK, we can use disjoint uni-decomposability to �nd a unique
i(s) ∈ I such that K(v)(K(w)∗(ts)) ∈ oi(s)(o

′
i(s)({∗})).

In short, for each s ∈ {l, r}n such that K(n̂(s))(µt) ∈ o({∗}), we can �nd an asso-
ciated unique i(s) ∈ I. So branch-tree substructures of t showing that Pon(µt) > q can
be partitioned into sets oi(o′i({∗})). The key is that each i ∈ I can contribute some-
thing to the total probability Po(µt), and since the sets oi(o′i({∗})) are disjoint, there
is no fear in counting some of the contributions multiples times. For each i ∈ I, we
de�ne a real-valued function f it : [0, 1] → [0, 1] where for each rational number q ∈ [0, 1]

we de�ne f it (p) := sup{p′ ∈ [0, 1] ∩Q | t ∈ (oi)>p((o
′
i)>p′({∗}))}. Then

∫︁ 1
0 f

i
t (p)dp is the

contribution of i ∈ I to Po(µt). More precisely, Po(µt) = Σi∈I(
∫︁ 1
0 f

i
t (p)dp).

The argument sketched above motivates the equality Po(µt) = Σi∈I(
∫︁ 1
0 f

i
t (p)dp)

in di�erent ways. Property 1 of disjoint uni-decomposability implies that Po(µt) ≥
Σi∈I(

∫︁ 1
0 f

i(p)dp), whereas property 2 and 3 together imply Po(µt) ≤ Σi∈I(
∫︁ 1
0 f

i(p)dp).
Lastly, note that the above equality holds for all t ∈ TΣ′(TΣ′({∗})).

Suppose that r ∈ TΣ′(TΣ′({∗})) is included in ((oi)>p((o
′
i)>p′({∗}) for any p, p′ ∈

[0, 1] ∩ Q such that t ∈ (oi)>p((o
′
i)>p′({∗}))}, then for any p, f ir(p) ≥ f it (p). Hence

Po(µr) = Σi∈I(
∫︁ 1
0 f

i
r(p)dp) ≥ Σi∈I(

∫︁ 1
0 f

i
t (p)dp) = Po(µt) > q. So we can conclude that

µr ∈ Jo>qK, which �nishes the proof of strong decomposability.

We can conclude that the following combinations are possible.

Corollary 5.3.12. The e�ects of global store and input/output can be combined with

probability. More formally: O′
gs and O′

io as de�ned above are strongly decomposable sets

of Scott open modalities.

5.3.5 Conclusions on combinations

The diagram given in Figure 5.2 shows which combinations have been proven to be
possible in the framework of this dissertation. Start at Errors, and follow a choice
of arrows to make a correct combination. Any subset of such a combination is also
possible. The dotted lines with the crosses show combinations of two e�ects which are
proven to be problematic in Subsection 3.5.4.

Errors

→→←←
Probability

↓↓ ↘↘

× Angelic ND

↓↓←←
Timer

↓↓←←

Demonic/Neutral ND

×

Input/Output Global Store

Figure 5.2: Proven combinations and impossibilities.

5.4. PURE LOGIC 113

It may be possible to prove that other combinations of e�ects can also be interpreted
by a decomposable set of modalities, e.g., global store with input/output. The above
subsections should give su�cient ideas on how to prove that these combinations have
a suitable decomposable set of Scott open modalities. However, since with the quanti-
tative logic of Chapter 6, combinations of e�ects are more easily modelled, we will not
attempt all the proofs here. The diagram in Figure 5.3 contains combinations of e�ects
for which we conjecture to be able to �nd a decomposable set of Scott open modalities,
together with the combinations for which we conjecture that this is impossible.

Errors

↓↓←←
Probability

↘↘

×

×
×

Angelic ND

↓↓ →→
Timer

↓↓

Demonic/Neutral ND

×

×

×

Global Store

↓↓
Input/Output

Figure 5.3: Conjectured combinations and impossibilities

5.4 Pure logic

In this section, we explore an alternative formulation of our logic which is independent
of the term syntax of the programming language. This has both conceptual and prac-
tical motivations. Our very approach to behavioural logic �ts into the framework of
endogenous logics in the sense of Pnueli [87]. Formulas ϕ... express properties of individ-
ual programs, through satisfaction relations P... |= ϕ.... Programs are thus considered as
`models' of the logic, with the satisfaction relation being de�ned via program behaviour.

We explore the possibility to express properties of program behaviour without prior
knowledge of the term syntax of the programming language. Under our formulation of
the logic V, this idea is violated by the value formula (V ↦→ ψ) at function type, which
mentions the programming language value V .

We replace this basic value formula (V ↦→ ψ) with the alternative (ϕ ↦→ ψ). Such a
change also has a practical motivation. The formula (ϕ ↦→ ψ) declares a precondition
and postcondition for function application, supporting a useful speci�cation style.

De�nition 5.4.1. The pure behavioural logic F is de�ned by replacing rule (6) of

114 CHAPTER 5. LOGIC VARIATIONS

Figure 3.1 with the alternative:

(6′)
ϕ ∈ Form(A) ψ ∈ Form(C)

(ϕ ↦→ ψ) ∈ Form(A → C)

The semantics is speci�ed by de�ning:

M |= (ϕ ↦→ ψ) :⇐⇒ ∀W : A, (W |= ϕ⇒M W |= ψ)

We moreover de�ne the positive pure behavioural logic F+ as the subset of F of
formulas not using negation.

The letter `F' in F stands for Formula, and is named as such because it uses a formula
instead of a value in the basic formulas of function types. Two logics are said to be
equi-expressive if any formula from one of the logics is equivalent to some formula of the
other logic, meaning they are satis�ed by the same terms. Given su�cient conditions,
this new pure logic F is equi-expressive to V.

Unlike in the proof of Lemma 4.2.6, proofs in this section use an induction on
types. At this stage in the dissertation, this is not a problem. However, in Chapter 7,
polymorphic and recursive types will be introduced, which will disallow the use of an
induction on types. So proofs by induction on types will not carry over to languages
containing such types. In the remainder of this chapter, we shall highlight whenever a
result uses an induction on types. All other results of this chapter should be adaptable
to the setting of Chapter 7, though we shall not include the proofs of these facts in this
thesis.

Proposition 5.4.2. If the open extension of ⊑V is compatible then the logics V and

F are equi-expressive. Similarly, if the open extension of ⊑V+ is compatible then the

positive fragments V+ and F+ are equi-expressive.

Proof. The formula (ϕ ↦→ ψ) within V, is equivalent to
⋀︁
{(V ↦→ ψ) | V |= ϕ}. This can

be used as the basis of an inductive translation from F to V (and from F+ to V+).
For the reverse translation, whose correctness proof is more interesting, we give a

little bit more detail. By an induction on E..., we prove that any formula ϕ... ∈ Form(E...)V
is equivalent to some formula ˆ︁ϕ... ∈ Form(E...)F . This is proven with an induction on ϕ....
Since the two logics F and V only vary in one formula constructor, the one at function
type, the only non-trivial case for this induction is when E... = A → C and ϕ... = (V ↦→ ψ).

We can use Lemma 3.3.6 to �nd a formula χV ∈ V such that: W |= χV ⇐⇒
V ⊑V W . Since ⊑V is compatible, we know that if M V |= ψ and V ⊑V W , then
M W |= ψ. So ϕ... = (V ↦→ ψ) ≡ (χV ↦→ ψ), this is not a formula in either logic, but can
be expressed in V.

Using the induction hypothesis on A and C, we can �nd ˆ︂χV ∈ Form(A)F andˆ︁ψ ∈ Form(C)F such that χV ≡ ˆ︂χV and ψ ≡ ˆ︁ψ. Hence we can derive that:

ϕ... = (V ↦→ ψ) ≡ (χV ↦→ ψ) ≡ (ˆ︂χV ↦→ ˆ︁ψ) ∈ F .

So we de�ne ˆ︁ϕ... as (ˆ︂χV ↦→ ˆ︁ψ). This �nishes the inductive translation, and we can
conclude that V and F are equi-expressive. By the same proof we know that V+ and
F+ are also equi-expressive.

5.4. PURE LOGIC 115

Combining the above proposition with Theorem 3.3.8 we obtain the following.

Corollary 5.4.3. Suppose O is a decomposable set of Scott-open modalities. Then

≡F coincides with ≡V , and ⊑F+ coincides with ⊑V+ (applicative O-bisimilarity and

similarity respectively). Hence the open extensions of ≡F and ⊑F+ are compatible.

Alternatively, we could de�ne the formula ϕ ↪→ ψ where:

M |= ϕ ↪→ ψ ⇐⇒ ∃V, V |= ϕ ∧ M V |= ψ

This formula can be de�ned in the pure logic F since (ϕ ↪→ ψ) ≡ ¬(ϕ ↦→ ¬(ψ)).
Moreover, it can be expressed in the positive pure logic if the behavioural preorder is
compatible, since then (ϕ ↪→ ψ) ≡

⋁︁
{(χV ↦→ ψ) | V |= ϕ}.

If ≡ is compatible, the logic using ϕ ↪→ ψ instead of (V ↦→ ψ) in V is equi-expressive
to V, since (V ↦→ ψ) ≡ (χV ↪→ ψ). This uses the fact that W |= χV holds if and only if
V ≡ W . However, the same cannot be done for the positive logic, replacing (V ↦→ ψ)

by ϕ ↪→ ψ in V+. As an example, look at the type UF1 → F1 and two of its terms
λx. return(∗) and λx. force(x). These two terms are obviously not positively equivalent,
since on input thunk(Ω) the former terminates whereas the latter diverges. However,
since thunk(Ω) ⊑+

UF1 thunk(return(∗)), the two terms cannot be distinguished in the
new positive logic.

5.4.1 Eliminating computation formula connectives in the pure logic

Like for the general logic in Section 5.1, we can remove the connectives for computation
formulas in the pure logic without changing the resulting logical equivalences. Recall
the formulation of L∗ from De�nition 5.1.2.

Lemma 5.4.4. Any ϕ... ∈ F can be written, using an induction on types, as⋁︁
i∈I
⋀︁
j∈Ji ψ...i,j where each ψ...i,j ∈ F∗ ∪ ¬F∗. Any ϕ... ∈ F+ can be written, using an

induction on types, as
⋁︁
i∈I
⋀︁
j∈Ji ψ...i,j where each ψ...i,j ∈ (F+)∗.

Proof. We prove the �rst statement only, since the proof can be easily adapted for
the second statement. We prove with induction on E..., followed by an induction on
ϕ... ∈ Form(E...)F , that ϕ... can be written as

⋁︁
i∈I
⋀︁
j∈Ji ψ...i,j where ψ...i,j ∈ F∗ ∪ ¬F∗. Note

that in the case of ϕ... being a value formula, this
⋁︁
i∈I
⋀︁
j∈Ji ψ...i,j is from F∗.

We can use the proof of Lemma 5.1.3 for any case except when E... = A → C and
ϕ... = (ϕ ↦→ ψ). Since value formulas are closed under conjunctions, we can �nd for
each closed value term V : A a formula χV ∈ Form(A) characterising V ⊑F (−) (c.f.
Lemma 3.3.6). Since ⊑F is compatible, (V ↦→ ψ) ≡ (χV ↦→ ψ) as argued before. Now
we use the induction hypothesis on each χV ∈ Form(A) and on ψ ∈ Form(C) to �nd
χV ≡ χ′

V ∈ F∗ and ψ ≡
⋁︁
i∈I
⋀︁
j∈Ji ψi,j with each ψi,j ∈ F∗ ∪ ¬F∗. We perform the

following derivation:

ϕ... ≡
⋀︂

V,V |=ϕ

(V ↦→ ψ) ≡
⋀︂

V,V |=ϕ

⎛⎝V ↦→
⋁︂
i∈I

⋀︂
j∈Ji

ψi,j

⎞⎠ ≡
⋀︂

V,V |=ϕ

⋁︂
i∈I

⋀︂
j∈Ji

(V ↦→ ψi,j).

116 CHAPTER 5. LOGIC VARIATIONS

Now apply the equivalences (V ↦→ ¬(ψ′)) ≡ ¬(V ↦→ ψ′) and (V ↦→ ψ′) ≡ (χ′
V ↦→ ψ′),

and use Lemma 5.1.1 to establish that ϕ... is equivalent to a formula from F∗ of the
correct shape.

Using the proof of Corollary 5.1.4 we can get the following result.

Corollary 5.4.5. With an induction on types, it holds that (≡F) = (≡F∗) and

(⊑F+) = (⊑(F+)∗).

5.4.2 Finitary value formula connectives in the pure logic

How many of the results of Section 5.2 carry over to the pure logic F∗? Not all of
them, as we will see. Recall the de�nition of (O, a, b, c) from De�nition 5.2.1. In this
subsection, we similarly de�ne (O, a, b, c)F following De�nition 5.2.1, using rule (6')
from De�nition 5.4.1 instead of rule (6). If we take (L)∗ as in De�nition 5.1.2, then
(O,

⋁︁
,
⋀︁
,¬)F corresponds to (F)∗, and (O,

⋁︁
,
⋀︁
,+)F to (F+)∗.

Firstly, it is still possible to remove disjunctions once all modalities distribute over
non-empty disjunctions. This is due to the following observation:

M |=
⋁︂
i∈I

ϕi ↦→ ϕ

⇐⇒ ∀V, ((∃i ∈ I, V |= ϕi) ⇒M V |= ϕ)

⇐⇒ ∀V,∀i ∈ I, (V |= ϕi ⇒M V |= ϕ)

⇐⇒ M |=
⋀︂
i∈I

(ϕi ↦→ ϕ).

Hence (
⋁︁
i∈I ϕi ↦→ ϕ) ≡

⋀︁
i∈I(ϕi ↦→ ϕ).

Lemma 5.4.6. Suppose O is a set of modalities such that all o ∈ O distribute over

non-empty disjunctions, then by induction on types it holds that (⊑(O,
⋁︁
,
⋀︁
,¬)F) =

(⊑(O,⊥,
⋀︁
,¬)F) and (⊑(O,

⋁︁
,
⋀︁
,+)F) = (⊑(O,⊥,

⋀︁
,+)F).

Proof. Let c ∈ {¬,+}, and take L = (O,
⋁︁
,
⋀︁
, c)F and K = (O,⊥,

⋀︁
, c)F . We prove

that each formula ϕ... ∈ L (value or computation) is equivalent to a disjunction
⋁︁
i∈I ψ...i

over formulas ψ...i from K. We prove this by induction on E..., where of each such type we
do an induction on ϕ... ∈ Form(E...)L.

The proofs of all cases but E... = A → C and ϕ... = (ψ ↦→ ϕ) are as in the proof of
Lemma 5.2.5. Assume E... = A → C and ϕ... = (ψ ↦→ ϕ). Since the value formulas of L
are still closed under conjunctions, we can for each V : A �nd a characterising formula
χV ∈ L (c.f. Lemma 3.3.6). By induction hypothesis, χV ≡

⋁︁
i∈IV χV,i and ϕ ≡

⋁︁
j∈J ϕi

for some selection of formulas χV,i ∈ K and ϕj ∈ K.

ϕ... = (ψ ↦→ ϕ) ≡
⋀︂

V :A,V |=ψ

(V ↦→ ϕ) ≡
⋀︂

V :A,V |=ψ

(V ↦→
⋁︂
j∈J

ϕj)

5.4. PURE LOGIC 117

≡
⋀︂

V :A,V |=ψ

⋁︂
j∈J

(V ↦→ ϕj) ≡
⋀︂

V :A,V |=ψ

⋁︂
j∈J

(χV ↦→ ϕj)

≡
⋀︂

V :A,V |=ψ

⋁︂
j∈J

⎛⎝⋁︂
i∈IV

χV,i ↦→ ϕj

⎞⎠ ≡
⋀︂

V :A,V |=ψ

⋁︂
j∈J

⋀︂
i∈IV

(χV,i ↦→ ϕj)

where each (χV,i ↦→ ϕj) ∈ K. We can swap the �rst two connectives using Lemma 5.1.1
to get a formula of the desired shape.

By adapting the proof of Lemma 5.4.6, like Lemma 5.2.6 did with Lemma 5.2.5, we
get the following result.

Lemma 5.4.7. Suppose O is a set of Scott-open modalities, then by induction on types

it holds that (⊑(O,
⋁︁
,
⋀︁
,¬)F) = (⊑(O,∨,

⋀︁
,¬)F) and (⊑(O,

⋁︁
,
⋀︁
,+)F) = (⊑(O,∨,

⋀︁
,+)F).

Negation can again be absorbed into the modalities in the following way.

Lemma 5.4.8. By induction on types, (≡(O,
⋁︁
,
⋀︁
,¬)F) = (≡(O∪O¬,

⋁︁
,
⋀︁
,+)F).

Proof. Let L = (O,
⋁︁
,
⋀︁
,¬)F and K = (O ∪ O¬,

⋁︁
,
⋀︁
,+)F . We adapt the proof of

Lemma 5.2.10 by doing the two inductions simultaneously. With an induction on E... we
prove that:

1. For any ϕ... ∈ Form(E...)K there is a ψ... ∈ K such that ¬(ϕ...) ≡ ψ....

2. For any ϕ... ∈ Form(E...)L there is a ψ... ∈ K such that ϕ... ≡ ψ....

Both these statements are proven with an induction on ϕ.... Almost all of these cases are
identical to their proof in Lemma 5.2.10, where (1) corresponds to the �rst induction
in that proof, and (2) corresponds to the second induction in that proof.

The only non-trivial case (again) is proving (1) for E... = A → C and ϕ... = (ψ ↦→ ϕ).
By the induction hypothesis, using statement (1), there is a formula ψ ∈ K such that
¬(ϕ) ≡ ψ. For each V : A, there is a characterising formula χV ∈ Form(A)L. By
the induction hypothesis, using statement (2), there is a formula χ′

V ∈ Form(A)K
equivalent to χV . We have all the tools to make the derivation:

¬(ϕ...) = ¬(ψ ↦→ ϕ) ≡ ¬

⎛⎝ ⋀︂
V :A,V |=ψ

(V ↦→ ϕ)

⎞⎠ ≡
⋁︂

V :A,V |=ψ

¬(V ↦→ ϕ)

≡
⋁︂

V :A,V |=ψ

(V ↦→ ¬(ϕ)) ≡
⋁︂

V :A,V |=ψ

(χV ↦→ ¬(ϕ)) ≡
⋁︂

V :A,V |=ψ

(χ′
V ↦→ ψ) ∈ K

So we are done with the inductions, and like for Lemma 5.2.10 we can conclude that
L ∪ ¬L and K are equi-expressive, hence (≡(O,

⋁︁
,
⋀︁
,¬)F) = (≡(O∪O¬,

⋁︁
,
⋀︁
,+)F) holds.

Adapting Lemma 5.4.6, we get a result which works well in combination with
Lemma 5.4.8.

118 CHAPTER 5. LOGIC VARIATIONS

Lemma 5.4.9. If all modalities o ∈ O distribute over non-empty disjunctions, then by

induction on types (⊑(O∪O¬,
⋁︁
,
⋀︁
,+)F) = (⊑(O∪O¬,⊥,

⋀︁
,+)F).

Proof. Adapt the proof of 5.4.6, �nding for each formula ϕ... of (O ∪ O¬,
⋁︁
,
⋀︁
,+)F , an

equivalent disjunction of formulas from (O ∪O¬,⊥,
⋀︁
,+)F by induction on types.

The only case not covered is when ϕ... = o¬(ψ) ≡ ¬(o(ψ)). By induction hypothesis,
ψ ≡

⋁︁
i ψi, so ϕ... ≡ ¬(o(

⋁︁
i ψi)) ≡ ¬(

⋁︁
i o(ψi)) ≡

⋀︁
i ¬(o(ψi)) and we are �nished.

The above lemma can also be established for the general logic V. However, as we
have shown, the logic can be reduced much further for most examples of e�ects. For
the pure logic F , this seems to be the most we can do. Applying the previous results,
we get that:

Proposition 5.4.10. For e�ect-free, error, input-output, global store and angelic non-

deterministic computations, it holds by induction on types that: (≡(O,
⋁︁
,
⋀︁
,¬)F) =

(≡(O∪O¬,⊥,
⋀︁
,+)F).

There is a striking di�erence between the value logic V and the pure logic F . Even
if the modalities distribute over non-empty conjunctions, it is in general not possible to
remove conjunctions from the pure logic. We look in particular to global store, assuming
for simplicity that there is only one store location. Modalities will be given by (n↣m)

where n,m ∈ N give possible values stored in that single store location. Even though
all modalities (n↣m) ∈ Ogs distribute over non-empty conjunctions, we cannot get rid
of the conjunctions. This is in stark contrast with the value logic V, where according
to Lemma 5.2.7, this is possible.

Proposition 5.4.11. The pure logic (Ogs,
⋁︁
,⊤,¬)F does not give a compatible logical

equivalence for global store.

We prove this in the case of a single memory location.

Proof. We study the type UF1 → F1, and two of its terms:

M := λx. update(0; force(return(x)); update(1; force(return(x))))

N := λx. update(0; force(return(x)); update(2; force(return(x)))).

Note that these terms use sequencing of computations P ;Q. We prove that
M ≡(Ogs,

⋁︁
,⊤,¬)F N .

Assume that M |= (ϕ ↦→ ϕ), where since (
⋁︁
i∈I ϕi ↦→ ϕ) ≡

⋀︁
i∈I(ϕi ↦→ ϕ) and

¬(⟨ψ⟩) ≡ ⟨¬(ψ)⟩, we can assume without loss of generality that ϕ is either of the form
⟨o(ψ)⟩ or ⟨¬(o(ψ))⟩, where ψ ∈ {⊥,⊤} (the only two formulas of type 1). We use
the fact that any computation formula ϕ satis�ed by a diverging computation must be
equivalent to ⊤.

� Suppose ϕ = ⟨(n↣m)(⊤)⟩ with n ̸= 0. Take V to be a term satisfying ϕ, such
that force(V) diverges when initiated with starting state 0. It is possible to �nd

5.5. LOGICAL STATEMENTS 119

such a term, because the formula ϕ only checks what happens when force(V) is
imitated with state n. For this V , M V diverges, and since M V |= ϕ, ϕ must be
equivalent to ⊤. Hence, (ϕ ↦→ ϕ) ≡ ⊤, so trivially N |= (ϕ ↦→ ϕ).

� Suppose ϕ = ⟨(0↣m)(⊤)⟩. Take V to be a term satisfying ϕ, such that force(V)

diverges when initiated with starting state 1. Then M V diverges, so ϕ ≡ ⊤, and
hence N |= (ϕ ↦→ ϕ).

� Suppose ϕ = ⟨(n↣m)(⊥)⟩, then ϕ ≡ ⊥, so N (vacuously) satis�es (ϕ ↦→ ϕ).

� Suppose ϕ = ¬(⟨(n↣m)(⊥)⟩), then ϕ = ⊤, so ϕ can only be ⊤ (by the same
proof as in the �rst point), so N satis�es (ϕ ↦→ ϕ).

� Suppose ϕ = ¬(⟨(0↣m)(⊤)⟩), then for any V such that V |= ϕ, both M V and
N V diverge, hence ϕ ≡ ⊥ and so N satis�es (ϕ ↦→ ϕ).

� Suppose ϕ = ¬(⟨(n↣m)(⊤)⟩) with n ̸= 0. Take V such that force(V) always
diverges. Then V |= ϕ and M V diverges, so ϕ ≡ ⊤, and hence N |= (ϕ ↦→ ϕ).

Whatever the case, N |= (ϕ ↦→ ϕ) holds. For negated formulas ¬(ϕ ↦→ ϕ), just let M
and N swap places in the above analysis. We can conclude that M ≡(Ogs,

⋁︁
,⊤,¬)F N .

However, let V be the value which, when forced will only diverge when starting
with state 2. Else, it simply terminates with the state untouched. Then M V always
terminates, and N V always diverges. So M V ̸≡(Ogs,⊥,

⋁︁
,¬)F N V . We must conclude

that ≡(Ogs,⊥,
⋁︁
,¬)F is not compatible.

5.5 Logical statements

The propositional logic used in this thesis to specify behavioural equivalence is a low
level idealized mathematical logic with in�nitary connectives. The formulas are not
always very natural for reasoning about programs, but the logic can be seen as a vehicle
into which higher level logics can be translated. In this section we will see an example
of how we can express more natural statements about e�ects in the behavioural logic.

Firstly, note that standard logical statements like implications and quanti�cation
can be expressed in the in�nitary propositional logic. Take for instance the following
two examples:

ϕ... ⇒ ψ... := ¬(ϕ...) ∨ ψ...

∃V : A, (V ↦→ ϕ) :=
⋁︂

{(V ↦→ ϕ) | V : A}

As an example of how our behavioural logic can express natural statements about
e�ects, we look at global store and Hoare logic.

120 CHAPTER 5. LOGIC VARIATIONS

5.5.1 Global store and Hoare logic

Hoare logic [28, 88] is given as an axiomatic foundation for imperative languages. An
expression in the logic is given by a triple {A}M{B}, which states that when the
starting state satis�es precondition A, then evaluating M , if it terminates, will yield an
end state satisfying postcondition B. There is a di�erence between partial correctness
and total correctness, where the latter requiresM to terminate whereas the former does
not. We can express both such interpretations of Hoare logic statements in the full logic
for global store.

We assume that the store locations are given by a set Loc. Values stored in these
locations are natural numbers, and an allocation of numbers to the variables is called
a state s ∈ State. An assertion of the global store is a set of such states. We can
use arithmetic expressions to describe such assertions, for instance for x, y, z ∈ Loc,
{x = 3, z = y2} := {s ∈ State | s(x) = 3, s(z) = s(y)2}.

Given two state assertions A and B, and a computation M : F1, we can express
Hoare triple statements in our logic V with modalities Ogs as:

{A}M{B}t := M |=
⋀︂
s∈A

⋁︂
r∈B

(s↣r)(⊤)

{A}M{B}p := M |=
⋀︂
s∈A

(︄(︄ ⋁︂
r∈State

(s↣r)(⊤)

)︄
⇒

(︄⋁︂
r∈B

(s↣r)(⊤)

)︄)︄
.

Note that uncountable conjunctions and disjunctions are used. However, as commented
before, since there are only countably many terms, the above statements are equivalent
to formulas in the logic V.

The �rst implements total correctness, saying that for any starting state s ∈ A, M
terminates with a �nal state satisfying B. The second implements a notion of partial
correctness, saying that for any starting state satisfying A, if M terminates, then it
terminates with a �nal state satisfying B.

Traditionally, Hoare logic has been formulated for an imperative language with
while-loops. There is a natural translation of programs of such a language into terms
of type F1. Given such a translation, the above formulas accurately re�ect the Hoare
triples from traditional Hoare logics. More generally, terms of type FA can return
values of type A whose properties can be examined further. It is natural to incorporate
information about the returned values in the Hoare triples, as is done in [66, 67, 88].

It therefore may be nice to generalise Hoare triple expressions in the following way,
where given a computationM : FA, two assertions A and B on the state and a formula
ϕ ∈ Form(A):

{A}M{B;ϕ}t := M |=
⋀︂
s∈A

⋁︂
r∈B

(s↣r)(ϕ)

{A}M{B;ϕ}p := M |=
⋀︂
s∈A

(︄ ⋁︂
r∈State

(s↣r)(⊤)

)︄
⇒

(︄⋁︂
r∈B

(s↣r)(ϕ)

)︄
.

These express Hoare triples as explained above, with the added requirement that if M
produces a value, then that value satis�es ϕ.

5.6. PROOF RULES 121

5.6 Proof rules

The previous section showed us a way in which a high level logic could be translated
into our low level in�nitary propositional logic. Such high level logics are more suitable
for reasoning about e�ects. However, that does not mean we cannot reason with our
low level logic. We can develop nice compositional proof rules for our modal logic which
can be used to verify that certain properties hold. These proof rules are not meant to
be useful in practise, but are there to illustrate what proof rules would look like when
translated to high level logics.

We begin our study of compositional proof rules by looking at sequencing terms
M to x.N . We focus on this example since understanding the sequencing of e�ectful
programs is critical for our understanding of e�ects themselves. Moreover, this sequenc-
ing has a simple interaction with modal properties. This interaction is closely related
to the properties of decomposability and strong decomposability from Subsection 3.3.2.

If we have a strong decomposable set of modalities, then there are proof rules of a
particularly nice form: They are speci�ed by a modality o ∈ O together with a family of
pairs of modalities: {(oi, o′i)}i∈I . This data determines the sequencing proof rule below,
which makes use of the pure behavioural logic F from Section 5.4.

{M |= oi(ψi) λx : A. N |= (ψi ↦→ o′i(ϕ)) }i∈I
M to x.N |= o(ϕ)

(5.1)

In this rule, the modalities o, oi and o′i and their index set I have been determined by
the specifying data. The other components of the rule may be instantiated arbitrarily,
thus the rule is parametric with respect to terms M and N and the formulas ϕ, ϕi and
ψi. The rule is compositional in the sense that its premises require properties to be
established for M and N separately.

De�nition 5.6.1. A sequencing proof rule of the form (5.1) is said to be sound if, for
all types A,B, all computation terms ⊢ M : FA and x : A ⊢ N : FB, and all value
formulas ϕ ∈ Form(B) and {ψi ∈ Form(A)}i∈I , the following implication holds:

∀i ∈ I. (M |= oi(ψi) ∧ λx : A. N |= (ψi ↦→ o′i(ϕ))) =⇒ M to x.N |= o(ϕ) .

There is a precise connection between the above proof rules, and strong decompos-
ability. Whenever O is a strongly decomposable set of Scott open modalities, there is a
set of sound sequencing proof rules, which is complete in the sense of the proposition be-
low, which informally states: Any true modal property of a sequencing term M to x.N

can be proven from properties of its subterms M and N using some sound sequencing
proof rule.

Proposition 5.6.2. Suppose that O is a strongly decomposable set of Scott open

modalities. Suppose also that M ′ to x.N ′ |= o ϕ′ holds (where ⊢ M ′ : FA′ and

x : A′ ⊢ N ′ : FB′). Then there is a sound sequencing proof rule of the form (5.1)

for o, with premise modalities {(oi, o′i)}i∈I , such that

∀i ∈ I. (M ′ |= oi ψ
′
i ∧ λx : A′. N ′ |= ψ′

i ↦→ o′i ϕ
′) ,

122 CHAPTER 5. LOGIC VARIATIONS

for some choice of value formulas {ψ′
i ∈ Form(A′)}i∈I .

The role of Scott openness in the formulation of this proposition is purely to ensure
that the compatibility property holds, which is used in the proof.

Proof. Assume that O is strongly decomposable and M ′ to x.N ′ |= o ϕ′. By Corol-
lary 2.2.10, |M ′ to x.N ′| = µ(|M ′|[V ↦→ |N ′[V/x]|]), so

µ(|M ′|[V ↦→ |N ′[V/x]|[|= ϕ′]]) = µ(|M ′|[V ↦→ |N ′[V/x]|])[|= ϕ′] ∈ o({∗}) .

By strong decomposability, there is a collection {(oi, o′i)}i∈I of pairs of modalities s.t.:

(1) ∀i ∈ I, |M ′|[V ↦→ |N ′[V/x]|[|= ϕ′]] ∈ oi(o
′
i({∗})),

(2) ∀r ∈ TT1, if ∀i ∈ I, r ∈ oi(o
′
i({∗})) then µr ∈ o({∗}).

We prove that {(oi, o′i)}i∈I speci�es the desired sequencing proof rule for o.
Soundness: To prove that the proof rule is sound, consider types A and B,

terms ⊢M : FA and x : A ⊢ N : FB, and value formulas ϕ ∈ Form(B) and
{ψi ∈ Form(A)}i∈I such that:

∀i ∈ I. (M |= oi ψi and λx : A. N |= ψi ↦→ o′i ϕ) .

For any i ∈ I and V such that V |= ψi, we have |N [V/x]|[|= ϕ] ∈ o′i({∗}). De�ning
r = |M |[V ↦→ |N [V/x]|[|= ϕ]] , we have by monotonicity and because |M |[|= ψi] ∈
oi({∗}), that r ∈ oi(o

′
i({∗})) . This holds for all i ∈ I, so by property (2) of strong

decomposability (given above), µr ∈ o({∗}), hence |M to x.N |[|= ϕ] ∈ o({∗}) and we
conclude that M to x.N |= o ϕ.

Completeness: We now prove that suitable value formulas {ψ′
i ∈ Form(A′)}i∈I

exist, allowing us to use the rule as a method for proving that M ′ to x.N ′ |= o ϕ′. For
any i ∈ I, de�ne

ψ′
i :=

⋁︂
{χV | V : A′, N ′[V/x] |= o′i ϕ

′} ,

where χV is the characteristic function for V , as given by Lemma 3.3.6. So if W |= χV
then V ⊑W , and since N ′[V/x] |= o′i ϕ

′ and ⊑ is compatible, N ′[W/x] |= o′i ϕ
′. Hence,

whenever W |= ψ′
i, we have that N

′[W/x] |= o′i ϕ
′, so λx : A′. N |= ψ′

i ↦→ o′i ϕ
′.

By the de�nition of ψ′
i and the observation above, it holds that, for any closed value

term W : A′, W |= ψ if and only if |N ′[W/x]|[|= ϕ′] ∈ o′i({∗}). By property (1) above
of strong decomposability, |M ′|[V ↦→ |N ′[V/x]|[|= ϕ′]] ∈ oi(o

′
i({∗})), so |M ′|[|= ψ′] ∈

oi({∗}), and hence M ′ |= oi(ψ
′).

The completeness argument relies on establishing a weakest precondition in the form of
ψ′
i, following completeness arguments established by [11].
We remark that Proposition 5.6.2 also works if we restrict to the positive logics. We

give examples of complete collections of sound sequencing proof rules in the case of our
e�ect examples.

5.6. PROOF RULES 123

For error, we have the following sequence proof rules:

M |= ↓(ψ) λx : A. N |= (ψ ↦→ Ee(ϕ))

M to x.N |= Ee(ϕ)

M |= Ee(⊥)

M to x.N |= Ee(ϕ)
.

The second rule has been simpli�ed by instantiating ⊥ for ψ, which can be done in any
situation where the rule is applicable. For that rule, the second premise as given in
(5.1) drops out, since any formula of the form (⊥ ↦→ ψ) is always satis�ed. Note that
since Ee is a nullary modality, the �rst statement can be equivalently formulated by
substituting ⊥ for ϕ.

For nondeterministic choice, the collection of rules is given by:

M |= ♢(ψ) λx : A. N |= (ψ ↦→ ♢(ϕ))
M to x.N |= ♢(ϕ)

M |= □(ψ) λx : A. N |= (ψ ↦→ □(ϕ))
M to x.N |= □(ϕ)

.

For probabilistic choice, such a collection of rules is given by:

{M |= P>ai ψi λx :A. N |= (ψi ↦→ P>bi(ϕ))}ni=1

M to x.N |= P>q(ϕ)
.

where each rule in the collection is speci�ed by some natural number n ≥ 1 and se-
quences of rationals 0 < a0 < · · · < an < 1 and 1 > b0 > · · · > bn > 0 satisfying
the following inequation: a0b0 +

∑︁n
i=1(ai − ai−1)bi ≥ q . Completeness can be derived

from Proposition 5.6.2, using the fact that such collections {(P>ai ,P>bi)}ni=1 arise in
the proof of strong decomposability for the probability modalities in Subsection 3.3.3.

For global store, such a collection is given by sequencing proof rules of the form:

M |= (s↣s′′)(ψ) λx :A. N |= (ψ ↦→ (s′′↣s′)(ϕ))

M to x.N |= (s↣s′)(ϕ)
.

For input/output:

M |= ⟨v⟩↓ (ψ) λx :A. N |= (ψ ↦→ ⟨w⟩↓ (ϕ))

M to x.N |= ⟨vw⟩↓ (ϕ)

M |= ⟨v⟩↓ (ψ) λx :A. N |= (ψ ↦→ ⟨w⟩...(ϕ))
M to x.N |= ⟨vw⟩...(ϕ)

M |= ⟨w⟩...(⊥)

M to x.N |= ⟨w⟩...(ϕ)
.

Like in the case of error, the second rule has been simpli�ed.
Last but not least, the timer e�ect.

M |= C≤a(ψ) λx : A. N |= (ψ ↦→ C≤b(ϕ))

M to x.N |= C≤a+b(ϕ)

M |= C≥a(ψ) λx : A. N |= (ψ ↦→ C≥b(ϕ))

M to x.N |= C≥a+b(ϕ)

M |= C≥a(ψ) λx : A. N |= (ψ ↦→ C↑
>b(ϕ))

M to x.N |= C↑
>a+b(ϕ)

M |= C↑
>a(⊥)

M to x.N |= C↑
>a(ϕ)

.

124 CHAPTER 5. LOGIC VARIATIONS

5.6.1 Other proof rules

Proof rules for other constructors of the programming language also exist. We illustrate
this for those constructors that concern themselvers directly with e�ects, since these
have interesting interactions with modalities.

We �rst give a list of rules for the return(−) constructor:

V |= ϕ

return(V) |= ↓(ϕ)
V |= ϕ

return(V) |= ♢(ϕ)
V |= ϕ

return(V) |= □(ϕ)

V |= ϕ q < 1

return(V) |= P>q(ϕ)

V |= ϕ s ∈ State

return(V) |= (s↣s)(ϕ)

V |= ϕ

return(V) |= ⟨ε⟩↓ (ϕ) return(V) |= ⟨ε⟩...(ϕ)

V |= ϕ

return(V) |= C≤q(ϕ)

V |= ϕ

return(V) |= C≥0(ϕ)

These rules are complete for return(−), so return(V) will never satisfy Ee(ϕ), C
↑
>q(ϕ), or

(s↣s′)(ϕ) if s ̸= s′.
Possibly more interesting are the rules for the e�ect operators:

raisee() |= Ee(ϕ)

M |= ♢(ϕ)
or(M,N) |= ♢(ϕ)

N |= ♢(ϕ)
or(M,N) |= ♢(ϕ)

M |= □(ϕ) N |= □(ϕ)
or(M,N) |= □(ϕ)

M |= P>a(ϕ) N |= P>b(ϕ) p ≤ (a+ b)/2

pr(M,N) |= P>p(ϕ)

λx : N.M |= ({s(l)} ↦→ (s↣s′)(ϕ))

lookupl(x ↦→M) |= (s↣s′)(ϕ)

V |= {n} M |= (s[l := n]↣s′)(ϕ)

updatel(V ;M) |= (s↣s′)(ϕ)

λx : N.M |= ({n} ↦→ ⟨w⟩↓ (ϕ))

read(x ↦→M) |= ⟨(n?)w⟩↓ (ϕ)

V |= {n} M |= ⟨w⟩↓ (ϕ)

write(V ;M) |= ⟨(n!)w⟩↓ (ϕ)

λx : N.M |= ({n} ↦→ ⟨w⟩...(ϕ))
read(x ↦→M) |= ⟨(n?)w⟩...(ϕ)

V |= {n} M |= ⟨w⟩...(ϕ)
write(V ;M) |= ⟨(n!)w⟩...(ϕ) M |= ⟨ε⟩...(ϕ)

M |= C≤q(ϕ) p ≥ q + c

tickc(M) |= C≤p(ϕ)

M |= C≥q(ϕ) p ≤ q + c

tickc(M) |= C≥p(ϕ)

M |= C↑
>q(ϕ) p ≤ q + c

tickc(M) |= C↑
>p(ϕ)

q < c

tickc(M) |= C↑
>c(ϕ)

The above rules are again complete for the e�ect operations. So for instance, raisee()
will never satisfy a formula of the form ↓ (ϕ), nor will write(V ;M) satisfy a formula of
the form ⟨ε⟩↓ (ϕ). Moreover, if or(M,N) |= ♢(ϕ), then either M |= ♢(ϕ) or M |= ♢(ϕ).

Most of the above proof rules can be derived from the proof rules for sequenc-
ing. As an example, consider the proof rules for or(M,N) |= ♢(ϕ). Since both

5.6. PROOF RULES 125

or(M,N) |= ♢(ϕ) and op(return(0), return(1)) to z. (case z of {M,S(x) ⇒ N}) generate
the same e�ect tree or(|M |, |N |), we know by Lemma 3.4.1 that (or(M,N) |= ♢(ϕ)) ⇔
(op(return(0), return(1)) to z. (case z of {M,S(x) ⇒ N}) |= ♢(ϕ)). So we can instead
apply the sequencing proof rule for ♢ on the second statement to get:

op(return(0), return(1)) |= ♢(ψ) λx : A. case z of {M, S(x) ⇒ N} |= (ψ ↦→ ♢(ϕ))
or(M,N) |= ♢(ϕ)

Since op(return(0), return(1)) |= ♢(ψ) holds if and only if 0 |= ψ or 1 |= ψ, we can
substitute {0} and {1} for ψ and remove the �rst clause. Note that K |= ({n} ↦→ ψ)

holds precisely when K n |= ψ. So we can do the following derivations using the
operational semantics on the case constructor:

� If M |= ♢(ϕ) then λx : A. case z of {M,S(x) ⇒ N} |= ({0} ↦→ ♢(ϕ)), and hence
by the above proof rule with ψ := {0}, it holds that or(M,N) |= ♢(ϕ).

� If N |= ♢(ϕ) then since N does not mention x it holds that
λx : A. case z of {M,S(x) ⇒ N} |= ({1} ↦→ ♢(ϕ)) and hence with ψ := {0} we
can derive or(M,N) |= ♢(ϕ).

So we have derived the proof rules for op(M,N) |= ♢(ϕ) from the sequencing proof rule.
This �nishes our study of Boolean logics for algebraic e�ects and their combinations.

Next chapter, we study a generalisation of the Boolean logic to a quantitative logic.

6

Quantitative logic

In this chapter, we will focus on generalising our logic to include quantitative behavioural
properties. Here we do not express truth with the two element set of the Booleans B,
but with a generalised truth space A.

The necessity of such a generalisation arises when combining certain e�ects, as well as
when studying particular examples of e�ects which are not entirely `algebraic' in nature.
For instance, when one combines nondeterminism with probability in the Boolean logic,
the obvious modalities one would de�ne do not form a decomposable set. E�ects which
allow program execution to jump back to earlier places in the computation, are equally
problematic.

In this chapter we will give examples of quantitative logics for e�ects, including but
not limited to: probability, global store, cost, and combinations with di�erent versions
of nondeterminism and error.

6.1 Quantitative predicates

We desire a generalised truth space A, which should have a preorder relation ⊴. The
preorder gives us a generalised notion of implication, where a ⊴ b if b is at least as true
as a. One should keep the standard example of the Boolean space B with implication
⇒ in mind to see how the quantitative logic generalises the de�nitions and results from
earlier chapters.

The space A should be a countably complete lattice, meaning for each countable
subset X ⊆ A there should be a least upper bound (supremum)

⋁︁
X and a greatest

lower bound (in�mum)
⋀︁
X. In particular, we have T :=

⋁︁
A =

⋀︁
∅ to denote

absolute truth and F :=
⋀︁
A =

⋁︁
∅ for absolute falsehood. The examples of truth

spaces given in this chapter will all be complete lattices, though for the results in this
chapter it is enough to only have countable suprema and in�ma. This is mainly because
there are only countably many terms.

Lastly, we desire a notion of negation, also called an involution for the complete
lattice. It is given by a unary map ¬ : A → A such that ∀a, b ∈ A, a ⊴ b ⇐⇒ ¬b ⊴ ¬a
and ∀a,¬¬a = a. This notion of negation is however not necessary when de�ning and
proving results about the positive fragment of the quantitative logic.

127

128 CHAPTER 6. QUANTITATIVE LOGIC

Examples of generalised truth spaces A are:

1. The Booleans A = B = {T ,F} with F ⊴ T and T ̸⊴ F. Suprema
⋁︁

and in�ma⋀︁
are given by disjunction and conjunction as expected, and negation ¬ is the

standard negation (swap function) on the Booleans.

2. The real number interval [0, 1], which is used to describe probabilities as truth
values. The order ⊴ is given by the standard `less than or equal to' order on real
numbers. Suprema

⋁︁
and in�ma

⋀︁
are as expected for the real numbers, and

negation ¬ is given by ¬x = 1− x.

3. The positive reals with in�nity [0,∞], which is used to describe expectations of
truth. Order is the standard `≤', and negation ¬ is given by ¬x = 1/x.

4. For any quantitative truth space A, we can �ip the order to create a new truth
space A≥. In particular, we can use [0,∞]≥ to describe costs as quantitative truth
values.

5. For any set A we can have a truth space A = P(A) given by the powerset of
that set. One can see A as a set of possibilities, and a value a ∈ A as denoting a
precondition for truth. The order ⊴ is given by inclusion ⊆, supremum by union,
in�mum by intersection and negation by complement ¬a = {x ∈ A | x /∈ a}.

6. For any countably complete lattice A and set X, we can construct a countably
complete lattice with involution (X → A), consisting of functions with the order
and involution de�ned point-wise.

7. For any two countably complete lattices A and X with involutions, we can con-
struct another countably complete lattice with involution, the space of mono-

tone functions (A →⊴ X). Hence for f ∈ (A →⊴ X) and a, b ∈ A, ⊴A b =⇒
f(a) ⊴X f(b). The order is again taken point-wise. The involution is de�ned as
(¬f)(a) = ¬(f(¬a)).

Using such generalised truth spaces, we will generalise the satisfaction relation of
formulas to quantitative relations. Hence, a term will now satisfy a formula to a certain
degree, where that degree is given by an element of the quantitative truth space A.
Hence the satisfaction relation |= gives a map Terms(E...) × Form(E...) → A. More
generally, we consider quantitative predicates on X which, like formulas, now give maps
D : X → A, and for t ∈ T (X) we de�ne t[∈ D] = D∗(t) = t[⟨x⟩ ↦→ ⟨D(x)⟩]. We will
give a de�nition of the quantitative logic in the next subsection.

6.1.1 The logic

In most aspects, the de�nition of the quantitative logic remains the same as the Boolean
logic from Figure 3.1 at the end of Section 3.2, albeit with a few modi�cations. Conjunc-
tions and disjunctions of formulas are replaced with in�ma and suprema respectively,

6.1. QUANTITATIVE PREDICATES 129

n ∈ N
{n} ∈ Form(N)

ϕ ∈ Form(C)

⟨ϕ⟩ ∈ Form(UC)

ϕ ∈ Form(Aj)

(j, ϕ) ∈ Form(Σi∈I Ai)

ϕ ∈ Form(A)

π0(ϕ) ∈ Form(A×B)

ϕ ∈ Form(B)

π1(ϕ) ∈ Form(A×B)

V ∈ Terms(A) ϕ ∈ Form(C)

(V ↦→ ϕ) ∈ Form(A → C)

j ∈ I ϕ ∈ Form(Cj)

(j ↦→ ϕ) ∈ Form(Πi∈I Ci)

q ∈ Q ϕ ∈ Form(A)

q(ϕ) ∈ Form(FA)

X ⊆countable Form(E...)⋁︁
X ∈ Form(E...)

X ⊆countable Form(E...)⋀︁
X ∈ Form(E...)

ϕ... ∈ Form(E...) a ∈ A
ϕ...⊵a ∈ Form(E...)

a ∈ A
κa ∈ Form(E...)

ϕ... ∈ Form(E...)

¬ϕ... ∈ Form(E...)

Figure 6.1: Quantitative formula constructors

and instead of negation we use involution. We also add two completely new features,
constant formulas κa and threshold formulas ϕ...⊵a. A constant formula κa is always
satis�ed to the same degree a, by any term. A threshold formula ϕ...⊵a checks whether
satisfaction of ϕ... is at least as high as a, and yields T when that is the case and F
when it is not. So the constant formulas are satis�ed to the same degree by all terms
of its type. They already inherently existed in the Boolean logic, as

⋁︁
∅ and

⋀︁
∅, but

since there are now intermediate values, constant formulas are explicitly added. The
threshold formula, or step construction, checks whether satisfaction of a formula passes
a certain threshold. Both such operations are used frequently (albeit implicitly) in
practical examples of quantitative veri�cation, e.g., in [56].

To interpret the e�ects, we will make use of quantitative modalities Q. A quantitative
modality q ∈ Q lifts a quantitative predicate P : X → A on any set X, to a quantitative
predicate q(P) : T (X) → A on the trees over that set. The quantitative predicate P
can be used to change the leaves x ∈ X of a tree t ∈ T (X) to values P (x) ∈ A. The
quantitative modality then looks at the resulting tree of T (A) and assigns to it a truth
value of A. As such, they are speci�ed by a function JqK : T (A) → A, with which the
lifted quantitative predicate can be explicitly given by q(P)(t) = JqK(t[⟨x⟩ ↦→ ⟨P (x)⟩]).

We give the precise formulation of the logic in Figure 6.1, which is very similar to
the Boolean logic in Section 3.3, except for the addition of the threshold and constant
formulas.

We de�ne a quantitative satisfaction relation as a function |=: Terms(E...) ×
Form(E...) → A, thus for P... ∈ Terms(E...) and ϕ... ∈ Form(E...), the satisfaction state-
ment P... |= ϕ... denotes an element of A. Satisfaction of the formulas is de�ned inductively
by the following rules, starting with the basic formulas:

130 CHAPTER 6. QUANTITATIVE LOGIC

V |= {n} :=

⎧⎨⎩T if V = n

F otherwise.

(i, V) |= (j, ϕ) :=

⎧⎨⎩V |= ϕ if i = j.

F otherwise.

V |= ⟨ϕ⟩ := force(V) |= ϕ.

(V0, V1) |= π0(ϕ) := V0 |= ϕ. M |= (V ↦→ ϕ) := M V |= ϕ.

(V0, V1) |= π1(ϕ) := V1 |= ϕ. M |= (j ↦→ ϕ) := M j |= ϕ.

The basic quantitative formulas at FA are particularly important, as they express how
the quantitative modalities are used to observe e�ects:

M |= q(ϕ) := JqK(|M |[|= ϕ]) := JqK(|M |[⟨V ⟩ ↦→ ⟨V |= ϕ⟩]) .

The satisfaction relation for non-basic formulas is de�ned as follows.

P... |=
⋁︁
X :=

⋁︁
{P... |= ϕ... | ϕ... ∈ X}.

P... |=
⋀︁
X :=

⋀︁
{P... |= ϕ... | ϕ... ∈ X}.

P... |= ϕ...⊵a :=

⎧⎨⎩T if ∃b ∈ A, b = (P... |= ϕ...) ∧ a ⊴ b,

F otherwise.

P... |= κa := a.

P... |= ¬(ϕ...) := ¬(P... |= ϕ...).

All formulas together form the general logic U . We distinguish a speci�c fragment
of U , the positive logic U+ excluding all formulas which use involution ¬(). The logic
U+ can be interpreted without assuming an involution on A.

6.2 Examples

We will look at some examples of e�ects for which there is a natural description of
behaviour using quantitative logics. Some of these examples coincide with examples
for the Boolean logic, in which case the resulting behavioural equivalence will be the
same. One of the main bene�ts of the quantitative logics is that it will be easy to build
on each of the quantitative descriptions of e�ects to combine those with the e�ect of
nondeterminism. This is in contrast with the Boolean logic, for which it was shown
in Subsection 3.5.4 that it could not properly describe the combinations of probability
and global store with nondeterminism. Moreover, other combinations of e�ects, like
probability and global store, are also more easily described compared to for instance
Subsection 5.3.4.

6.2. EXAMPLES 131

In the following subsections, we look at examples of e�ects and e�ect combinations
which can be described by the quantitative logic. Such (combinations of) e�ects are
represented by an e�ect signature Σ of e�ect operations, for which we need to choose
a relevant truth space A and one or more relevant quantitative modalities. In order to
de�ne the modalities, we shall always proceed in the following steps. The modalities
of the examples are constructed inductively. We de�ne JqK(−)(−) : N× T (A) → A and
take the actual denotation to be JqK(t) :=

⋁︁
n∈N(JqKn(t)). There are three standard

cases in the de�nition:

1. JqK0(t) := F.

2. JqKn+1(⊥) := F.

3. JqKn+1(η(a)) := a.

The remaining cases concerning the nodes of e�ect operations, are speci�c to the e�ects
in question. By de�ning the modalities in such a way, it will be easy to prove that they
satisfy the correct properties (of continuity and decomposability) from Subsection 6.3.1
to prove that the resulting behavioural equivalence is a congruence.

6.2.1 Probability

As in Subsection 2.3.4, we have the singleton signature Σpr := {pr(−,−) : α2 → α}.
The complete lattice of truth values is the space of real-valued probabilities

A := [0, 1], with the standard ordering ⊴ := ≤, so
⋁︁

= sup and
⋀︁

= inf. The minimal
element is 0 and maximal element is 1.

We have a single quantitative modality E where

JEKn+1(pr(t, r)) := (JEKn(t) + JEKn(r))/2 ,

the average of two continuations.
Given a computation M : FA, and a formula ϕ ∈ Form(A), the element

M |= E(ϕ) ∈ [0, 1] gives the expectation of V |= ϕ when V is sampled/obtained from
M . In the special case that ϕ is Boolean, meaning it gives only T or F, M |= E(ϕ)

can be seen as the probability that ϕ is satis�ed by whatever M returns. Note that
the original modality formulas P>qψ for the Boolean description of probability can be
de�ned as

⋁︁
{E(ψ)⊵p | p ∈ Q ∩ [0, 1], p > q}, given a suitable translation for ψ.

6.2.2 Probability with score

Alternatively to interpreting probability with a truth space of probabilities [0, 1], we
could interpret it with a truth space of expectations A := [0,∞], the non-negative real
numbers with in�nity and ≤ order. This interpretation also lends well to the inclusion
of score operators, which can assign value multipliers to certain evaluation branches.
These give a way of reweighting the distribution of results by a non-negative factor, as
done in [103].

132 CHAPTER 6. QUANTITATIVE LOGIC

We take as signature the set Σ := Σpr ∪ {scoreq(−) : α → α | q ∈ Q>0}. We again
have a single quantitative quantitative modality ES where

JESKn+1(pr(t, r)) := (JESKn(t) + JESKn(r))/2 ,

JESKn+1(scoreq(t)) := q · JESKn(t) .

Now for a bit of a tangent. In the case of probability (optionally with score) inter-
preted using truth space [0,∞], we may replace the threshold operator with products
of formulas ϕ... ·ψ... with the interpretation P... |= ϕ... ·ψ... := (P... |= ϕ...) · (P... |= ψ...). Taking ϕ...n to
be the n-th product of ϕ..., the threshold formula ϕ...⊵a is equivalent to⋀︂

{κa · (κ1 ∧
⋀︂
n∈N

(ϕ... · κq)n) | q ∈ Q>0, 1/q ≤ a} .

So the inclusion of the threshold operator can be seen as a consequence of the fact that
a computation could be sampled any number of times.

6.2.3 Global Store

As in Subsection 2.3.5, we have the signature consisting of two operators per store
location: Σgs := {lookupl(−) : αN → α, updatel(−;−) : N× α→ α | l ∈ Loc}.

The countably complete lattice of truth values is A := P(State), where State is the
set of states (Loc → N). The order ⊴ is given by inclusion ⊆, where

⋁︁
:=
⋃︁

and⋀︁
:=
⋂︁
. So the minimal element is ∅ and maximal element is State.

We have a single quantitative modality G where

JGKn+1(lookupl(t0, t1, . . .)) := {s ∈ State | s ∈ State ∈ JGKmax(0,n−s(l))(ts(l))} ,

JGKn+1(updatel(m; t)) := {s | s[l := m] ∈ JGKn(t)} .

Given a computation M : FA, and a formula ϕ ∈ Form(A), the element M |=
G(ϕ) ⊆ State is the set of beginning states for which the evaluation of M terminates,
with some value V and end state s such that s ∈ (V |= ϕ). Hence we can seeM |= G(ϕ)

as the weakest precondition on global states for which, when M is run, ϕ is satis�ed.

6.2.4 Probability and global store

As an example of how easy it is to combine e�ects using a quantitative logic, compared to
the Boolean logic as done in 5.3.4, we turn towards the combination of probability with
global store. This combination has as e�ect signature the disjoint union Σ := Σpr∪Σgs.
For this combination of e�ects, we take as truth space the functions A := [0, 1]State with
point-wise order, where State is the set of global states NLoc and [0, 1] the lattice of
probabilities with standard order. Intuitively, this space assigns to each starting state a
probability that a property is satis�ed. We de�ne a single modality EG which, for each
state s ∈ State, is given by the following rules:

JEGKn+1(por(t, r))(s) := (JEGKn(t)(s) + JEGKn(r)(s))/2 ,

6.2. EXAMPLES 133

JEGKn+1(lookupl(t0, t1, . . .))(s) = JEGKmax(0,n−s(l))(ts(l))(s) ,

JEGKn+1(updatel,m(t))(s) = JEGKn(t)(s[l := m]) .

The statement P... |= EG(ϕ) gives the function sending each state s ∈ State to the
expected result of the following computation: Run P... with starting state s. If the
evaluation diverges, the result will be zero. If the evaluation terminates with ending
state s′ and returns a term V , then the result will be (V |= ϕ)(s′).

This quantitative logic for this combination of e�ects induces a behavioural preorder
satisfying the equational theory of the combination of probability and global store with
all distributivity laws, given by the tensor of e�ects in [33].

6.2.5 Timer

As in Subsection 2.3.7, given a countable set of real-valued units of time increments Inc,
we de�ne the signature Σti := {tickc(−) : α→ α | c ∈ Inc}.

The up-interpretation for the e�ect uses as generalised truth space the non-negative
real numbers with in�nity A := [0,∞], with the standard ordering of `smaller or equal
than'. This space forms a complete lattice, where in particular the supremum of a
diverging sequence of reals is given by the maximal element T := ∞. The element 0 is
the minimum element F.

There is but one quantitative modality C↑, de�ned with the rule:

JC↑Kn+1(tickc(t)) := c+ JC↑Kn(t) .

Addition is de�ned as normal, where in particular c+∞ = ∞.
If M terminates, then the statement M |= C↑(ϕ) gives the total time of termination

of M plus the time given by V |= ϕ where V is the term produced by M . Note
however, that this modality detects `ticks' even if the computation eventually diverges,
since JC↑K(tickc(⊥)) = (c + 0) = c ̸= F. As an example of a formula which can be
constructed in this logic, consider the formula: ϕ :=

⋀︁
n∈N(C

↑(κn))⊵c+n, which yields
T if a computation terminates after delaying the computation for at least c ∈ A time.

For the down-interpretation, we use A := [0,∞]≥, with the reversed order ≥: so
a ⊴ b if a is, as a real number, larger or equal than b. We have

⋁︁
:= inf and

⋀︁
:= sup,

so the minimum element is ∞ and the maximum element is 0.
There is still one quantitative modality C↓, de�ned with the same rule:

JC↓Kn+1(tickc(t)) := c+ JC↓Kn(t)

If M terminates, then the statement M |= C↓(ϕ) has the same interpretation as in
the up-interpretation. However, since c+∞ = ∞, this modality cannot detect `ticks' if
the computation eventually diverges. E.g. JC↓K(tickc(⊥)) = (c+∞) = F.

It is possible to assign a quantitative interpretation of the general (combined) in-
terpretation of the timer e�ect given in Subsection 3.2.7, though we will not include it
here. If the weights of all ticks are given by natural numbers, we could alternatively
use as quantitative truth space A := N ∪ {∞}. Though this space does not have an
involution.

134 CHAPTER 6. QUANTITATIVE LOGIC

6.2.6 Combination with nondeterminism

We discuss nondeterminism in the sense of Subsection 2.3.3, and show how we can add
this e�ect to any of the examples given above in a uniform way. As was said before, the
de�nitions of the quantitative modalities as constructed in the previous examples are
perfectly suited for combinations with nondeterminism. The concepts of supremum and
in�mum of the coutanbly complete lattice aligns itself neatly with angelic and demonic
nondeterminism. In this part, we will present the combination of nondeterminism with
other e�ects.

In the cases of global store and timer, this combination with nondeterminism is in
line with the tensor combination of e�ects given in [33]. More precisely, in such cases, the
operations of global store and timer freely distribute over the nondeterministic choice
operation, and vice versa. However, in the case of probability with nondeterminism,
the combination is neither the tensor nor the sum from [33], since the combination has
one distributivity law, but not all. It is like the natural combination of nondeterminism
and probability, speci�ed in a similar way as in [49].

We take a signature of e�ects Σ, a countably complete lattice of truth value A and
a set of quantitative modalities Q as in any of the previous examples. We extend the
signature to include binary nondeterminism Σ′ := Σ ∪ {or(−,−) : α2 → α}. The only
thing we need to do is extend the inductive de�nition of JqK(−) of each q ∈ Q, to include
its treatment of the nondeterministic choice operator. There are two ways to deal with
this, either by taking the optimistic (angelic) approach or by taking the pessimistic
(demonic) approach. The two methods result in the new quantitative modalities q♢
and q□ respectively, using the following de�nitions:

Jq♢Kn+1(or(t, r)) := Jq♢Kn(t) ∨ Jq♢Kn(r) ,

Jq□Kn+1(or(t, r)) := Jq□Kn(t) ∧ Jq□Kn(r) ,

where ∨ and ∧ are de�ned according to the supremum and in�mum from A.
The choice of the modalities depends on which type of nondeterminism one wants

to consider, either q♢ for angelic or q□ for demonic. If one wants to consider neutral
nondeterminism, the setof modalities should contain both these quantitative modalities.

Take for instance the example of probability and nondeterminism. In this case,
we can see the nondetermistic choice as being resolved by a scheduler, whereas the
probabilistic choice is resolved by a coin toss. The scheduler will however not know
the results of coin tosses in the future1. See for instance [49] for various di�erent
descriptions for this combination of e�ects, including the scheduler interpretation. The
point of nondeterminism is that we do not know how the scheduler behaves, however
we can do a best case and a worst case analysis. We can see M |= E♢(ϕ) as the
expectation of satisfaction of ϕ, given that the nondeterministic choice is controlled
by some scheduler optimizing (either by intention or by accident) the expectation of
satisfaction of ϕ. Similarly, M |= E□(ϕ) gives the expectation assuming the agent or

1This is re�ected in the equational theory by nondeterministic choice not distributing over proba-
bilistic choice.

6.2. EXAMPLES 135

scheduler controlling the choice is minimizing the expectation of satisfaction. In the
case where we do not know what the scheduler will choose, which is the case of neutral
nondeterminism, we cannot necessarily do a concrete prediction of the expectation.
However, if the nondeterministic choice is resolved by some scheduler, we do know that
the expectation of satisfaction lies somewhere between M |= E♢(ϕ) and M |= E□(ϕ).

6.2.7 Combinations with Errors

We may also extend the language with error messages in the sense of Subsection 2.3.2,
though there are two di�erent methods which possibly give di�erent interpretations of
e�ectful behaviour. Take Σ, A and Q, and let Err be a set of error messages, then we
can extend the signature (with disjoint union) to Σ′ := Σ∪ {raisee() : 1 → α | e ∈ Err}.

There are two methods for combining e�ects with Error. We will start with the
most general one, whose result induces an equational theory which is in most cases
(e.g., global store and timer) in line with the `sum' of equational theories from [33]. For
each function D : Err → A and modality q ∈ Q, assigning a choice of observation value
to each error message, we construct qD using the same rules as for q but treating the
new e�ect operators as follows:

JqDKn+1(raisee) := D(e) .

We get a new set of modalities Q+ := {qD | q ∈ Q, D : Err → A}. This new set
is rather large in size, which is in most cases actually unnecessary. We could limit the
functions D used to only those whose image is {T ,F}, giving the alternative set of
modalities Q⊗ := {qD | q ∈ Q, D : Err → {T ,F}}. The equational theory of the result
of this method is in most cases (e.g., global store and timer) in line with the `tensor'
of equational theories from [33]. When considering probability or nondeterminism with
errors, the two methods yield the same induced behavioural equivalence.

For global store however, Q⊗ gives a di�erent interpretation then Q+. This results
in the following phenomenon: `When an error message is reached, the state of the
global store cannot be observed'. This is a perfectly valid alternative interpretation,
and coincides with the situation where either (1) the state cannot be retrieved after an
error has been raised, or (2) the state resets after an error is raised. Concretely, for any
modality (s↣s′)D ∈ Q⊗,

J(s↣s′)DK(updatel(n; raisee())) = J(s↣s′)DK(raisee()).

However, there is a modality in Q+ which distinguishes the two trees.

6.2.8 Input/Output

For input/output, as in Subsection 2.3.6, we have the signature consisting of two oper-
ators: Σio := {read(−) : αN → α,write(−;−) : N× α→ α}.

Like in the Boolean logic, we classify a set of io-traces W ′ recursively as follows:

w ::= ε | (!m)w | (?m)w

136 CHAPTER 6. QUANTITATIVE LOGIC

where m ∈ N. Let W be the set {wt, wo | w ∈ W ′} which we equip with the order ≤
de�ned by the following two rules:

1. For any w ∈W ′, wo ≤ wt.

2. For w ∈W ′ and m ∈ N, then w(!m)o ≤ wo and w(?m)o ≤ wo.

The countably complete lattice of truth values is given by A := P↓
̸=∅(W), the set of

non-empty down-closed subsets of W . So for a ⊆W ,

a ∈ A ⇐⇒ a ̸= ∅ ∧ ∀vi, wi ∈W. (wi ∈ a ∧ vi ≤ wi) ⇒ vi ∈ a.

A truth value gives a set of execution traces which can be produced by a computation.
Here, wt denotes an execution trace followed by termination, whereas wo denotes an
execution trace without the necessity of termination, an open-ended trace. In particular,
if an execution trace wt or wo can be produced, then any smaller execution trace vo can
be produced, which motivates us to only use down-closed sets as truth values. Moreover,
the execution trace εo will always be produced, so we moreover only use non-empty sets
of execution traces as truth values. Note too that εo is the smallest execution trace, so
it is included in any truth value.

The order ⊴ of A is given by the inclusion ordering, with
⋁︁

and
⋀︁

the union and
intersection respectively. This space does not have an involution.

We de�ne a quantitative modality IO, checking which traces can be produced by a
computation. We de�ne it with the following rules:

JIOKn+1(write(m; t)) := {((!m)w)i | i ∈ {o, t}, wi ∈ JIOKn(t)}

JIOKn+1(read(t0, t1, . . .)) := {((?m)w)i | i ∈ {o, t},m ∈ N, wi ∈ JIOKmax(0,n−m)(tm)}.

Speci�cally, the truth value given by M |= IO(ϕ) returns the set of execution traces
containing (1) traces wo produced by M , and (2) traces (wv)i where M produces trace
wt and terminates with a value V such that vi ∈ (V |= ϕ).

Though this quantitative formulation of input/output combines well with an-
gelic nondeterminism, the same cannot be said about the combination with de-
monic nondeterminism. The combined modality IO□ will only give execution traces
that are guaranteed to occur. As such, the modality does not distinguish between
or(write(0;x),write(1; y)) and ⊥. This problem may be solved by de�ning a larger al-
beit more complicated `continuation style' truth space. Such a de�nition is not as
intuitive as the one given above, and as such we will not give it here.

6.2.9 Jumps

For our last example, we represent the e�ect of jumping to earlier places in the compu-
tation as an algebraic e�ect. This is a simpli�ed version of the jump e�ect from [20],
where here we do not use dynamically created variables to carry additional information
with us while jumping. This limited version of jumping acts like a form of exception

6.2. EXAMPLES 137

catching. As we wil show below, if one tries to model this e�ect with the Boolean logic,
the equational theory trivializes.

The e�ect resembles exception catching; given a set of jumps Jum which, if reached,
will make the computation jump back to an appropriate `catch' earlier in the computa-
tion. The signature is comprised of:

Σju := {jumpj() : 1 → α, catchj(−,−) : α× α→ α | j ∈ Jum} .

The computation catchj(M,N) will compute M and return its result, unless it reduces
to a jump jumpj(), in which case it continues evaluation with M . The computation
jumpk() will jump back to an earlier point in the computation, the most recent catch
catchk(M,N), and will then commence computing N .

The quantitative logic is de�ned over a space of tokens A := (Jum ∪ {T ,F}), con-
taining jump tokens j ∈ Jum and maximal and minimal elements T and F. So for all
i, j ∈ Jum, F ⊴ i ⊴ T and (i ⊴ j) ⇔ (i = j). A formula in this logic gives back a
token, designating whether the computation terminates (T), diverges (F), or whether
we have jumped out of the computation (j ∈ Jum). Note that this is an example of a
non-distributive complete lattice if Jum has more than two elements. Involution can be
de�ned by taking ∀j ∈ Jum.¬j = j, and the usual swapping of T and F.

We de�ne only one quantitative modality J, which we recursively de�ne as follows:

JJKn+1(jumpj()) := j ,

JJKn+1(catchj(t, r)) :=

⎧⎨⎩JJKn(r) if JJKn(t) = j

JJKn(t) otherwise
.

Note that if JJK(t) ⊴ JJK(t′), then JJK(catchj(t, r)) ⊴ JJK(catchj(t′, r)), which is necessary
for proving that the modality satis�es the congruence properties from Subsection 6.3.1,
yet unlike the previous examples is not immediately obvious from the formulation.

This de�nition of a quantitative logic for jumps is not directly amendable to a
combination with nondeterminism, at least not without having or(jumpi(), jumpj()) ≡ ⊥
when i ̸= j in the case of demonic nondeterminism. It is possible to avoid this problem
by complicating the de�nition of the truth space and the modalities.

Equational theory of jump: To give more intuition on the behaviour of this e�ect,
we give the appropriate equations that will be satis�ed by the behavioural equivalence,
whose de�nition is forthcoming.

catchj(jumpj(), x) = x = catchj(x, jumpj())

catchj(jumpk(), x) = jumpk() if j ̸= k

catchj(catchj(x, y), z) = catchj(x, catchj(y, z))

catchj(⊥, x) = ⊥

catchj(x, x) = x .

138 CHAPTER 6. QUANTITATIVE LOGIC

If we attempt to model the above equations with Boolean modalities as in Chapter 3,
we get into trouble. From Section 3.5 we know that if we have a decomposable set of
Boolean modalities, then according to Proposition 3.5.7, any equation holds if and
only if it holds for any substitution of variables for {x,⊥}. However, if we assume
that the above equations hold, then we can prove (with Proposition 3.5.7) that the
following equation holds catchj(x, catchj(y, z)) = catchj(x, catchj(z, y)). Hence, with
x := jumpj() and y := ⊥, we can prove that the equation z = ⊥ holds for any z.
As such, the entire equational theory trivializes, which is not a particularly healthy
consequence.

6.3 Behavioural preorders

In this section, we will de�ne the behavioural preorders and equivalences, and the
properties su�cient for proving that these are compatible. This generalises Section 3.3.
We can de�ne a behavioural preorder for any fragment of formulas L as follows.

De�nition 6.3.1. For any subset of the quantitative logic L ⊆ U , the logical preorder
⊑L is de�ned by:

∀P..., R... ∈ Terms(E...), P... ⊑L R... ⇐⇒ ∀ϕ... ∈ Form(E...)L, P... |= ϕ... ⊴ R... |= ϕ... .

The logical equivalence ≡L is given by ⊑L ∩ ⊒L.

The general behavioural preorder ⊑ is the logical preorder ⊑U , whereas the positive
behavioural preorder ⊑+ is the logical preorder ⊑U+ . We denote by ≡ and ≡+ the
logical equivalences over U and U+ respectively (the behavioural equivalences). These
closed relations can be extended to relations on open terms by using the open extension

from De�nition 3.3.7.
Remark: The behavioural equivalences for probability, global store, timer, and in-

put/output as de�ned above using the truth spaces and quantitative modalities from
Section 6.2 coincide with the behavioural equivalences as induced by the Boolean logics
from Chapter 3 using the corresponding modalities for those e�ects from Section 3.2.

A basic formula is a formula (not necessarily atomic) which on the top level does
not have a supremum

⋀︁
, an in�mum

⋁︁
, an involution ¬, a constant formula κa or a

threshold formula (−)⊵a. It is not di�cult to see that both ⊑ and ⊑+ are completely
determined by basic formulas, similar to what is observed in Lemma 3.3.5. Also note
that for any (L) ⊆ (U), we always have that (⊑) ⊆ (⊑L) simply because fewer properties
are tested by L than by U . We give some other general results.

Lemma 6.3.2. The general behavioural preorder ⊑ is symmetric, so (⊑) = (≡).

Proof. Assume P... ⊑ R..., then for any formula ϕ... we have ¬(P... |= ϕ...) = (P... |= ¬(ϕ...)) ⊴
(R... |= ¬(ϕ...)) = ¬(R... |= ϕ...). Hence (R... |= ϕ...) ⊴ (P... |= ϕ...) for any ϕ..., so R... ⊑ P....

Henceforth, we will use ≡ instead of ⊑.

6.3. BEHAVIOURAL PREORDERS 139

Lemma 6.3.3. For any fragment L of the logic U closed under countable in�ma, it

holds that for any term P... : E... there is a formulas χP... s.t.:

(R... |= χP...) =

⎧⎨⎩T if P... ≡L R...

F otherwise.

Proof. For any R... : E... such that P... ̸≡L R... we can �nd a formula ψ...
R... such that

P... |= ψ...
R... ̸⊴ R... |= ψ...

R... . We choose such a formula for each R... as above, and de�ne
X := {ψ...R...⊵(P...|=ψ...R...) | R... : E..., P... ̸≡L R...}, which is countable since there are countably many
terms. Then χP... :=

⋀︁
X has the desired properties.

With a similar proof to Lemma 3.4.1, we have the following su�cient condition for
behavioural equivalence:

Lemma 6.3.4. If |M | = |N | then M ≡ N .

6.3.1 Congruence properties

We introduce the properties that we will use in order to establish that the (open ex-
tensions) of the behavioural preorders are compatible, hence precongruences. These are
generalisations of the properties needed for the Boolean logic, established in Subsec-
tion 3.3.2.

We follow the structure of Subsection 3.3.2, generalising properties on Boolean
modalities used for proving the Compatibility Theorem (Theorem 3.3.8), to proper-
ties on quantitative modalities. Firstly, we will generalise the notion of Scott opennes,
and later on we generalise the notion of decomposability.

Scott continuity

There are three natural preorders on TA. One is the tree order ≤ which, as introduced
just after De�nition 2.2.1, is the natural domain-order for any set of trees TX. Second
is the leaf-order ⊴TA, which is the lifting of the order ⊴ on A to an order on TA, using
the mono preservation property of the endofunctor T . Concretely, t ⊴TA r if r can be
obtained from t by replacing some of the leaves a ∈ A of t by leaves b ∈ A of a higher
degree a ⊴ b.

It is natural to combine the two orders into a third general order ≤TA where t ≤TA t
′

if and only if there is a t′′ ∈ TA such that t ≤ t′′ and t′′ ⊴TA t. We omit the proof of
the following lemma since it is straightforward.

Lemma 6.3.5. For any two trees t, t′ ∈ TA, the following two statements are equivalent:

1. t ≤TA t
′.

2. ∃t′′ ∈ T (A), t ⊴TA t′′ ∧ t′′ ≤ t′.

140 CHAPTER 6. QUANTITATIVE LOGIC

More generally, given a domainX, we can construct a domain T ′X whose underlying
set is TX. The order of this new domain is de�ned as ≤TA, using the order on X instead
of ⊴. This de�nition gives us an endofunctor T ′ on the category of domains, and so we
can see the order ≤TA simply as the order of T ′(A,⊴).

For each of the three orders de�ned above, we will de�ne a notion of monotonicity
and a notion of continuity for quantitative modalities.

De�nition 6.3.6. A quantitative modality q ∈ Q can have the following properties:

� q is tree-monotone if for any two t, r ∈ TA, (t ≤ r) ⇒ (JqK(t) ⊴ JqK(r)).

� q is leaf-monotone if for any two t, r ∈ TA, (t ⊴TA r) ⇒ (JqK(t) ⊴ JqK(r)).

� q is monotone if for any two t, r ∈ TA, (t ≤TA r) ⇒ (JqK(t) ⊴ JqK(r)).

� q is Scott tree-continuous is for any sequence t0 ≤ t1 ≤ t2 ≤ . . . of trees and its
limit ⊔ntn, JqK(⊔ntn) =

⋁︁
nJqK(tn).

� q is Scott leaf-continuous is for any sequence t0 ⊴TA t1 ⊴TA t2 ⊴TA . . . of trees
and its limit ⊔⊴TA

n , JqK(⊔⊴TA
n tn) =

⋁︁
nJqK(tn).

� q is Scott continuous is for any sequence t0 ≤TA t1 ≤TA t2 ≤TA . . . of trees and
its limit ⊔≤TA

n tn, JqK(⊔≤TA
n tn) =

⋁︁
nJqK(tn).

Note that Scott tree-continuity implies tree-monotonicity, Scott leaf-continuity implies
leaf-monotonicity, and Scott continuity implies monotonicity. Moreover, q is both Scott
tree-continuous and Scott leaf-continuous, if and only if q is Scott continuous, and
similarly for monotonicity.

We see the notion of Scott continuity as the quantitative analogue to Scott openness,
and we will see that all of the examples of quantitative modalities given in this chapter
are Scott continuous. However, in order to prove that the induced behavioural preorders
are compatible, we only need leaf-monotonicity together with Scott tree-continuity. The
property of leaf-monotonicity has a similar role as the property of leaf-upwards closure
in Chapter 3, being used in a lot of auxiliary results.

Decomposability

We are now going to �nd an analogue to the notion of decomposability, from De�ni-
tion 3.3.20, in the quantitative setting. This analogue asserts a property of quantitative
modalities with respect to the monad multiplication map µ : TTX → TX. We �rst
rede�ne the behavioural preorder ≼ from De�nition 3.3.13 as a preorder on TA, and
then rede�ne ⋞ from De�nition 3.3.17 as a preorder on TTA.

We write h : A →⊴ A to say that h is a monotone function from A to A, so
a ⊴ b⇒ h(a) ⊴ h(b). Remember that for a function h : X → Y we write h∗ : T (X) →
T (Y) for its lifting de�ned by h∗(t) := t[⟨x⟩ → ⟨h(x)⟩]. For a quantitative predicate
h : X → A and a modality q ∈ Q, we de�ne a map q(h) : TX → A, where for t ∈ TX

6.3. BEHAVIOURAL PREORDERS 141

we write t−∈ q(h) for JqK(h∗(t)) ∈ A (generalising the notation t ∈ o(X) to quantitative
modalities).

We now generalise the relation ≼ from De�nition 3.3.13 to the quantitative setting.

De�nition 6.3.7. For any two trees t, t′ ∈ TA:

t ≼ t′ ⇐⇒ ∀q ∈ Q, ∀h : A →⊴ A, (t−∈ q(h)) ⊴ (t′−∈ q(h)) .

For any relation R ⊆ X × Y , and quantitative predicate h : X → A, we de�ne
(R↑[h]) : Y → A to be the function such that (R↑[h])(b) := supa∈X,aRb(h(a)). This
is a quantitative generalisation of the notion of right-set de�ned in Subsection 3.3.2
(just before Lemma 3.3.19). The following result generalises Proposition 3.3.14 to the
quantitative setting.

Lemma 6.3.8. If all q ∈ Q are leaf-monotone, then for any two trees t, t′ ∈ TA, the
following three statements are equivalent:

1. t ≼ t′.

2. ∀h : A →⊴ A, h∗(t) ≼ h∗(t′).

3. ∀q ∈ Q, ∀f : A → A, (t−∈ q(f)) ⊴ (t′−∈ q(⊴↑[f])).

Note that in point three, we use all quantitative predicates f : A → A, not just the
monotone ones.

Proof. The equivalence (1) ⇔ (2) follows from the fact that the identity function on A
is monotone, and the composition of two monotone functions is monotone.

For (1) ⇒ (3), assume t ≼ t′ and take f : A → A and q ∈ Q. Since for any a ∈ A,
f(a) ⊴ (⊴↑[f])(a) and q is leaf-monotone, it holds that (t−∈ q(f)) ⊴ (t−∈ q(⊴↑[f])).
For a ⊴ b, (⊴↑[f])(a) =

⋁︁
{f(c) | c ∈ A, c ⊴ a} ⊴

⋁︁
{f(c) | c ∈ A, c ⊴ b} = (⊴↑[f])(b),

so (⊴↑[f]) is monotone. Hence by (1), (t−∈ q(⊴↑[f])) ⊴ (t′−∈ q(⊴↑[f])).
For (3) ⇒ (1), note that for any monotone map h : A →⊴ A, (⊴↑[h])(a) =⋁︁

{h(b) | b ∈ A, b ⊴ a} = h(a).

We classify abstract quantitative behavioural properties on TA, which act as the
quantitative alternative to tree formulas de�ned in Subsection 3.3.2. A quantitative
predicate H : TA → A is called quantitative behaviourally saturated if for any two trees
t, t′ ∈ TA such that t ≼ t′, it holds that H(t) ⊴ H(t′). We write QBS(TA) for the
set of quantitative behaviourally saturated functions. Note that for H ∈ QBS(TA), by
de�nition H = (≼↑[H]). Moreover, for any function F : TA → A, the function (≼↑[F])

is in QBS(TA). So we can conclude that for a function H : TA → A, H ∈ QBS(TA)
if and only if there is a function F : TA → A such that H = (≼↑[F]). Moreover, for
q ∈ Q, JqK ∈ QBS(TA).

We rede�ne the relation ⋞ from De�nition 3.3.17 as a relation on quantitative double

trees TTA.

142 CHAPTER 6. QUANTITATIVE LOGIC

De�nition 6.3.9. We de�ne the preorder ⋞ on TTA by: for any two quantitative
double trees r, r′ ∈ TTA,

r ⋞ r′ : ⇐⇒ ∀q ∈ Q,∀H ∈ QBS(TA), r−∈ q(H) ⊴ r′−∈ q(H).

The following result generalises Lemma 3.3.19.

Lemma 6.3.10. If all modalities q ∈ Q are leaf-monotone, then for any two

r, r′ ∈ TTA, the following three statements are equivalent:

1. r ⋞ r′.

2. ∀H ∈ QBS(TA), H∗(t) ≼ H∗(t′).

3. ∀F : TA → A, ∀q ∈ Q, r−∈ q(F) ⊴ r′−∈ q(≼↑[F]).

Proof. For (1) ⇒ (2), note that forH ∈ QBS(TA) and h : A →⊴ A, (h◦H) ∈ QBS(TA).
For (2) ⇒ (1), use that the identity function id : A → A is monotone.
For (1) ⇒ (3), note that for any t ∈ TA, F (t) ⊴ (≼↑[F])(t) so the result follows

from leaf-monotonicity and the fact that (≼↑[F]) ∈ QBS(TA).
For (3) ⇒ (1), use that for H ∈ QBS(TA), (≼↑[H]) = H.

Given the generalisations of ≼ and ⋞ given above, the quantitative analogue to the
notion of decomposability can be de�ned in the same way as done in De�nition 3.3.20:

De�nition 6.3.11. Q is decomposable if for any two double trees r, r′ ∈ TTA:

r ⋞ r′ =⇒ µr ≼ µr′.

We can generalise Lemma 3.3.22 to the quantitative setting, which gives an equiva-
lent formulation of decomposability assuming that all modalities are leaf-monotone.

Proposition 6.3.12. If all q ∈ Q are leaf-monotone, then Q is decomposable if and

only if:

∀r, r′ ∈ TTA, r ⋞ r′ =⇒ ∀q ∈ Q, JqK(µr) ⊴ JqK(µr′).

Proof. The implication from left to right is immediate, when considering the (monotone)
identity function on A.

For the other direction, assume r ⋞ r′, and take some h : A →⊴ A. We prove that
h∗∗(r) ⋞ h∗∗(r′). For H ∈ QBS(TA) and q ∈ Q, (h∗∗(r)−∈ q(H)) = JqK(H∗(h∗∗(r))) =

JqK((H ◦ h∗)∗(r)) = (r−∈ q(H ◦ h∗)). By equivalence (1) ⇔ (2) from Lemma 6.3.8,
(H ◦ h∗) ∈ QBS(TA), so since r ⋞ r′, (r−∈ q(H ◦ h∗)) ⊴ (r′ ∈ q(H ◦ h∗)). By the same
series of equalities as given for r, it holds that (r′−∈ q(H ◦ h∗)) = (h∗∗(r′)−∈ q(H)), so
we have proven that h∗∗(r) ⋞ h∗∗(r′). By assumption, and since h∗(µr) = µ(h∗∗(r))

and h∗(µr′) = µ(h∗∗(r′)), it holds that for any q ∈ Q, µr−∈ q(h) = JqK(µ(h∗∗(r))) ⊴
JqK(µ(h∗∗(r′))) = (µr′−∈ q(h)). This is for all q ∈ Q and h : A →⊴ A, so µr ≼ µr′. We
conclude that Q is decomposable.

6.3. BEHAVIOURAL PREORDERS 143

At this stage it would be possible to formulate a quantitative analogue to strong
decomposability as formulated in De�nition 3.3.25. It turns out however, that all the
examples formulated in this chapter satisfy and even stronger property, which only
considers modalities individually.

De�nition 6.3.13. A modality q ∈ Q is sequential if for any double tree r ∈ TTA:

JqK(µr) = JqK(JqK∗(r)).

The readers may recognise the above property as one of the conditions for JqK to be
an Eilenberg-Moore algebra. We will compare the notions further in Subsection 6.3.3.

Proposition 6.3.14. If all q ∈ Q are leaf-monotone and sequential, then Q is decom-

posable.

Proof. We prove the equivalent characterisation of decomposability given in Proposi-
tion 6.3.12. Assume r ⋞ r′, and let q ∈ Q. Then since JqK ∈ QBS(TA) and q is sequen-
tial, JqK(µr) = JqK(JqK∗(r)) = (r−∈ q(JqK)) ⊴ (r′−∈ q(JqK)) = JqK(JqK∗(r′)) = JqK(µr′).
So Q is decomposable.

We can now formulate the central theorem.

Theorem 6.3.15 (The Generalised Compatibility Theorem). If Q is a decomposable

set of leaf-monotone and Scott tree-continuous modalities, then the open extensions of

≡ and ⊑+ are compatible, hence precongruences.

This theorem is proven in the same way as Theorem 3.3.8, following the proof given
in Chapter 4. First, in Section 6.4, we de�ne a relator speci�ed by our set of quantitative
modalities Q. We then de�ne applicative similarity and bisimilarity as in Section 4.2,
and generalise the proofs of the Coincidence Theorems to establish that the general
behavioural equivalence and the positive behavioural preorder coincide with applicative
bisimilarity and applicative similarity respectively. We will then prove that this relator
satis�es the properties established in Section 4.3, given that the modalities satisfy the
properties of Scott tree-continuity, leaf-monotonicity and decomposability. With those
properties, the proof by Howe's method from Chapter 4 can be reused to conclude that
the open extensions of applicative similarity and bisimilarity are compatible, hence
proving the Generalised Compatibility Theorem.

We end this subsection with two helpful lemmas.

Lemma 6.3.16. If all modalities of Q are leaf-monotone, and f, g : T (X) → A are

functions such that for all x ∈ X, f(x) ⊴ g(x), then ∀t ∈ T (X), f∗(t) ≼ g∗(r).

Proof. Let v : A →⊴ A, then since v is monotone it holds that for all x ∈ X, v(f(x)) ⊴
v(g(y)). So for q ∈ Q, since its leaf-monotone, we get JqK(v∗(f∗(t))) = JqK((v◦f)∗(t)) ⊴
JqK((v ◦ g)∗(t)) ⊴ JqK((v ◦ g)∗(r)) = JqK(v∗(g∗(r))).

Lemma 6.3.17. For each quantitative predicate D : Terms(E...) → A there is a formula

ϕ...D ∈ Form(E...) such that for all P... ∈ Terms(E...), (P... |= ϕ...D) = (⊑↑[D])(V).

144 CHAPTER 6. QUANTITATIVE LOGIC

Proof. Just take
⋁︁
{κD(P...) ∧ χP... | P... ∈ Terms(E...)}, using characteristic formulas from

Lemma 6.3.3, which is a supremum over a countable set.

In the next subsection, we will see that the examples of quantitative modalities given
in this chapter satisfy the properties such that the Generalised Compatibility Theorem
can be applied.

6.3.2 The examples satisfy Scott continuity and sequentiality

If a quantitative modality is constructed using the recipe laid out in Section 6.2, it is
easier to prove that it satis�es properties su�cient for Theorem 6.3.15 to hold. Let q
be one such modality from Section 6.2. There we de�ned the denotation JqK : TA → A
of q as the supremum of approximations

⋁︁
nJqKn. In this subsection, we will prove that

the modality q is both Scott continuous and sequential.
Firstly, we note that q satis�es the following property.

De�nition 6.3.18. A modality q constructed using the recipe of Section 6.2 preserves

limits of ascending sequences if: For any e�ect operator op : Nk×αI → α ∈ Σ, a k-tuple
of natural numbers l, and an I-indexed family of ascending sequences {a0i ⊴ a1i ⊴ . . . }i∈I
from A, and n ∈ N, JqKn(op(l, i ↦→ ⟨

⋁︁
m∈N a

m
i ⟩)) =

⋁︁
m∈NJqKn(op(l, i ↦→ ⟨ami ⟩)).

Note in particular the use of `max' in the de�nitions of modalities over e�ect operators
with countable arities. This is done to make sure that the above property holds.

Lemma 6.3.19. If q is a modality constructed using the recipe of Section 6.2, and q

preserves limits of ascending sequences, then q is Scott continuous.

Proof. We prove by induction on n ∈ N that for any sequence of trees t0 ≤TA t1 ≤TA
t2 ≤TA . . . , JqKn(⊔≤TA

m tm) =
⋁︁
mJqKn(tm).

If n = 0, then JqKn(⊔≤TA
m tm) = F =

⋁︁
mJqKn(tm) for any sequence of trees.

For n > 0, assume that the statement holds for all k < n. Take an ascending
sequence of trees t0 ≤TA t1 ≤TA t2 ≤TA If all tm are equal to ⊥, the statement
holds trivially. Otherwise, let m be the lowest number such that tm ̸= ⊥. We do a case
analysis on the root node of tm remarking that all subsequent trees will have the same
type of root node.

� If tm = ⟨am⟩ where am ∈ A, then all subsequent trees tk with k > m must be equal
to some leaf ⟨ak⟩, and hence ⊔≤TA

m tm = ⟨
⋁︁
k≥m ak⟩. Given this, JqKn(⊔≤TA

m tm) =⋁︁
k≥m ak =

⋁︁
mJqKn(tm).

� If tm = op(l, i → tim) with op ∈ Σ, then all subsequent trees tk with
k > m must be equal to a tree of the form op(l, i → tik), and ⊔≤TA

m tm =

op(l, i → ⊔≤TA
m tim). Now by construction of q, since for any r ∈ TA, JqKn(r) =

JqKn(⟨JqKn(r)⟩), it holds that for any sequence of trees ri, JqKn(op(l, i → ri) =

JqKn(op(l, i→ ⟨JqKni(r
i)⟩) where each ni < n (depending on the de�nition of q,

6.3. BEHAVIOURAL PREORDERS 145

either ni := n − 1 or ni := max(n− 1− i, 0)). So in particular, JqKn(⊔≤TA
m tm) =

JqKn(op(l, i→ ⟨JqKni(⊔≤TA
m tim)⟩).

Using the induction hypothesis followed by the assumption that q pre-
serves limits of ascending sequences, we can conclude that JqKn(⊔≤TA

m tm) =

JqKn(op(l, i→ ⟨
⋁︁
mJqKni(t

i
m)⟩)) =

⋁︁
mJqKn(op(l, i→ ⟨JqKni(t

i
m)⟩)) =⋁︁

mJqKn(op(l, i→ tim)) =
⋁︁
mJqKn(tm).

This �nishes the induction, so we can conclude that for any sequence of trees t0 ≤TA
t1 ≤TA t2 ≤TA . . . , JqK(⊔≤TA

m tm) =
⋁︁
nJqKn(⊔≤TA

m tm) =
⋁︁
n

⋁︁
mJqKn(tm) =

⋁︁
mJqK(tm).

Lemma 6.3.20. If q is a modality constructed using the recipe of Section 6.2, and q

preserves limits of ascending sequences, then q is sequential.

Proof. The previous lemma implies that q is Scott leaf-continuous. By construction of
q it holds that for any t ∈ TTA and any two numbers n,m ∈ N, it holds that:

� JqKn(µt) ⊴ JqKn(JqK∗n(t)).

� JqKn(JqK∗m(t)) ⊴ JqKn+m(µt)

Hence
⋁︁
nJqKn(µt) =

⋁︁
n,mJqKn(JqK∗m(t)).

Now observe that for any t ∈ TTA, we get a sequence of trees ascending in the `⊴TA'
order JqK∗0(t) ⊴TA JqK∗1(t) ⊴TA JqK∗2(t) ⊴TA So by Scott leaf-continuity it holds that:
JqK(µt) =

⋁︁
nJqKn(µt) =

⋁︁
n,mJqKn(JqK∗m(t)) =

⋁︁
mJqK(JqK∗m(t)) = JqK(

⋁︁
mJqK∗m(t)) =

JqK(JqK∗(t)), hence t is sequential.

We conclude that all the given examples of quantitative modalities are sequential and
Scott continuous.

Even though all examples from this chapter are sequential, there are lots of decom-
posable sets of modalities which contain non-sequential modalities. Take for instance
some of the Boolean modalities from Chapter 3, which can be translated to quantitative
modalities on the truth space A = B. This translation will be discussed in more detail
in Subsection 6.5.1. Several of the modalities from Chapter 3 are not sequential when
translated into quantitative modalities. In the quantitative logic however, we have an
extra degree of freedom with our ability to choose a truth space. This �exibility allows
us to more easily �nd a sequential modality for specifying the e�ect behaviour.

6.3.3 Eilenberg-Moore algebras

In [26], e�ects are interpreted using monads, on which Eilenberg-Moore algebras are
de�ned. Such algebras have a similar function as the modalities used in this thesis. It
turns out that most of the examples of quantitative modalities de�ned in this chapter
actually are speci�ed by EM-algebras JqK on A. In this subsection, we will study the
connection between quantitative modalities and EM-algebras further. One principal

146 CHAPTER 6. QUANTITATIVE LOGIC

di�erence with [26] however, is that in this thesis it is su�cient to de�ne modalities as
algebras on the tree monad only.

In a category, an Eilenberg-Moore algebra on some monad structure (T, η, µ) is a
morphism a : TX → X such that the following diagrams commute:

X
η →→

idX ↘↘

TX

a
↓↓
X

TTX
Ta →→

µX
↓↓

TX

a
↓↓

TX a
→→ X

For any of the quantitative modalities q of the given examples in Section 6.2 it holds
that JqK : T (A) → A is an Eilenberg-Moore algebra in the category of sets, with respect
to the monad structure (T (−), η, µ). There is a tight connection between the property
of sequentiality and Eilenberg-Moore algebras.

Lemma 6.3.21. For q ∈ Q, if JqK : T (A) → A is an EM-algebra, then q is sequential.

Proof. The second diagram for EM-algebras is precisely the equation required for se-
quentiality.

As said before, the quantitative modalities from our examples in this chapter do
naturally form EM-algebras. Informally, the µ-diagram naturally corresponds to the
notion of preservation over sequencing, whereas the η-diagram corresponds to preser-
vation over return(−). It is however not necessary for our quantitative modalities to
denote an algebra satisfying the η-diagram. A similar property which does hold for our
modalities q, which seem to be su�cient for our purposes, is that ∀a, b ∈ A, a ⊴ b ⇒
JqK(⟨a⟩) ⊴ JqK(⟨b⟩).

It is however interesting to note that the η-diagram is almost a consequence of the
µ-diagram because of the following observation.

Lemma 6.3.22. Suppose a : TX → X is a surjective morphism in the category of sets.

If the µ-diagram commutes, then the η-diagram commutes.

Proof. Let x ∈ X, then by surjectivity there is a t ∈ TX such that a(t) = x. Since
η(t) ∈ TTX, we can use the µ-diagram to derive that:

a(η(x)) = a(η(a(t))) = a(Ta(η(t))) = a(µX(η(t))) = a(t) = x .

The same proof applies when a : TX → X is a regular epimorphism and T is a monad
on a regular category.

Recall that there is an endofunctor T ′ in the category of domains, where T ′A has
as underlying set TA and as order ≤TA. Given this, a modality q is Scott continuous,
if and only if its denotation JqK : T (A) → A speci�es a morphism from T ′A to A in
the category of domains. Moreover, this endofunctor T ′ forms a monad (T ′(−), η, µ)

in the category of domains. As such, we can state the following su�cient condition for
compatibility.

6.3. BEHAVIOURAL PREORDERS 147

Proposition 6.3.23. If for any q ∈ A, JqK : T ′A → A is an Eilenberg-Moore algebra

on A w.r.t. (T ′(−), η, µ) in the category of domains, then Q satis�es the compatibility

properties, and hence the open extensions of the positive behavioural preorder and the

behavioural equivalence are both compatible.

We have not found an example of an e�ect which can only be described using a
decomposable set of Scott open modalities which are not EM-algebras. However, by
weakening the conditions for `correct' sets of modalities, there is more freedom in the
choice of logic for any particular e�ect. For example, the Boolean logics for probability
and global store have modalities which do not form EM-algebras. Similarly, the combi-
nation of probability and global store could also be modelled with truth spaces B, [0, 1],
and P(NLoc), for which the `correct' modalities also do not denote EM-algebras.

As noted before, the possibility to choose a truth space A, on top of choosing modali-
ties, gives us a �exibility which allows us to more easily �nd an Eilenberg-Moore algebra.
In most cases, the truth space is used to combine multiple Boolean modalities into one
quantitative modality denoting an EM-algebra. Take for instance the e�ect of proba-
bility, which has a Boolean modality P>r for each rational probability 0 ≤ r ≤ 1 (see
Subsection 3.2.4), all of which can be combined into one quantitative modality E by
taking a truth space of all probabilities [0, 1] (see Subsection 6.2.1).

6.3.4 Pure quantitative logic

As in Section 5.4, we can de�ne a pure variation of the quantitative logic. We replace
the formula constructor (V ↦→ ϕ) with another formula constructor,

ϕ ∈ Form(A) ψ ∈ Form(C)

(ϕ ↦→ ψ) ∈ Form(A → C)

for which the satisfaction relation is de�ned by

M |= (ϕ ↦→ ψ) := inf{ max{ ¬(V |= ϕ), M V |= ψ} | V ∈ Terms(A)} .

The expression is inspired by the standard equality for implication (a⇒ b) ≡ (b∨(¬a)).
Alternatively, we can give a simpler di�erent de�nition, not using involution:

M |= [ϕ ↦→ ψ] := inf{ M V |= ψ | V ∈ Terms(A), (V |= ϕ) = T} .

Firstly note that if A is equal to the Booleans, then the two formulas (ϕ ↦→ ψ) and
[ϕ ↦→ ψ] are equivalent. Moreover, the two logics formulated by replacing the (V ↦→ ϕ)

constructor with (ϕ ↦→ ψ) and [ϕ ↦→ ψ] respectively, yield equi-expressive logics. This is
because each formula can be expressed in terms of the other using the other non-basic
constructors in the logic:

[ϕ ↦→ ψ] ≡ (ϕ⊵T ↦→ ψ) ,

(ϕ ↦→ ψ) ≡
⋀︂

{ [¬((¬ϕ)⊵a) ↦→ ψ] ∨ κa | a ∈ A} .

From here on out, we will only consider using (ϕ ↦→ ψ).

148 CHAPTER 6. QUANTITATIVE LOGIC

Any formula of the form (ϕ ↦→ ψ) can be expressed in U , because of the equivalence

(ϕ ↦→ ψ) ≡
⋀︂

{
⋁︂

{κ¬(V |=ϕ), (V ↦→ ψ)} | V ∈ Terms(A)} (6.1)

Note that κ¬(V |=ϕ) is the constant formula for the value ¬(V |= ϕ), and does not actually
use ¬ as a formula constructor. So the constructor can also be expressed in the positive
logic U+.

Let W and W+ be the variants of U and U+ respectively, for which the de�nition of
formulas uses (ϕ ↦→ ψ) instead of (V ↦→ ψ). We call ⊑W the pure behavioural preorder

and ⊑W+ the pure positive behavioural preorder respectively. As argued in Section 5.4,
a conceptual advantage of the logic W is that its syntax is independent of the term
syntax of the programming language, a property which U clearly does not enjoy. Note
that we can still see W and W+ as fragments of U by translating each (ϕ ↦→ ψ) in terms
of formulas from U using equivalence (6.1).

Proposition 6.3.24. If ⊑◦
U is compatible, then ⊑U =⊑W . If ⊑◦

U+ is compatible,

then ⊑U+ =⊑W+.

Proof. We prove that any formula ϕ... ∈ U has an equivalent formula ϕ...∗ ∈ W. This is
done by an induction on types, and for each type and induction on its formulas. There
is only one non-trivial case, for function types A → C.

Let (V ↦→ ϕ) ∈ U . We use Lemma 6.3.3 on W and V to �nd χV ∈ W, and
induction hypothesis on ϕ ∈ U to �nd ϕ∗ ∈ W. We de�ne (V ↦→ ϕ)∗ ∈ W by
(χV ↦→ ϕ∗). It holds that M |= (V ↦→ ϕ)∗ :=

⋀︁
{T | W : A, V ̸⊑W W} ∧⋀︁

{M W |= ϕ |W : A, V ⊑W W} =
⋀︁
{M W |= ϕ | W : A, V ⊑W W} ⊴ (M V |= ϕ)

since V ⊑W V .
By Induction Hypothesis onA we have V ⊑W W ⇒ V ⊑U W , and by compatibility

we have V ⊑U W ⇒ M V ⊑U M W . Hence M |= (V ↦→ ϕ)∗ ⊵ (M V |= ϕ). We can
conclude thatM |= (V ↦→ ϕ)∗ = (M V |= ϕ) and hence (V ↦→ ϕ) ≡ (V ↦→ ϕ)∗ ∈ W.

Note that the above proof works as well if we used the other formula constructor [ϕ ↦→ ψ]

instead. This is mainly because (χV ↦→ ψ) ≡ [χV ↦→ ψ].

6.4 Applicative Q-simulations

In this section, we illustrate the connection between behavioural equivalence and ap-
plicative bisimilarity, generalising the results from Chapter 4. We start with the notion
of a Q-relator.

De�nition 6.4.1. Given a set of quantitative modalities Q, we de�ne an operator
Q(−) : P(X × Y) → P(TX × TY) for any two sets X and Y , given by:

tQ(R) t′ ⇐⇒ ∀h : X → A, ∀q ∈ Q, t−∈ q(h) ⊴ t′−∈ q(R↑[h])

6.4. APPLICATIVE Q-SIMULATIONS 149

We repeat the development from Chapter 4, generalising the results from the
Boolean to the quantitative setting. The proofs of the generalised results are very simi-
lar to the proofs of the original results. We start with the result that the above operator
is in fact a relator in the sense of De�nition 4.1.1, which generalises Lemma 4.1.2.

Lemma 6.4.2. If all q ∈ Q are leaf-monotone, then Q(−) is a relator, meaning it has

the following properties:

1. For any set X, =T (X)⊆ Q(=X).

2. For R ⊆ X × Y and S ⊆ Y × Z, Q(R)Q(S) ⊆ Q(RS).

3. If R ⊆ S ⊆ X × Y , then Q(R) ⊆ Q(S).

4. For f : X → Z, g : Y →W , and R ⊆ Z×W , Q({(x, y) ∈ X×Y | f(x)Rg(y)}) =
{(t, r) ∈ TX × TY | f∗(t)Q(R)g∗(r)}.

Proof.

1. For any x ∈ X, (=X
↑[h])(x) = h(x), so t−∈ q(h) ⊴ t−∈ q(R↑[h]).

2. ∀z ∈ Z, (RS↑[h])(z) = sup{h(z) | x ∈ X,xRSz} =

sup{h(z) | x ∈ X, y ∈ Y, xRy, ySz} = (S↑[(R↑[h])])(z).

3. If R ⊆ S, then ∀x ∈ X, (R↑[h])(x) ⊴ (S↑[h])(x), so t′−∈ q(R↑[h]) ⊴ t′−∈ q(S↑[h]).

4. Assume t Q({(x, y) ∈ X × Y | f(x)Rf(y)}) r, we prove f∗(t)Q(R)g∗(r). Let
h : Z → A and q ∈ Q, then (f∗(t)−∈ q(h)) = (t−∈ q(h ◦ f)) ⊴
(r−∈ q(λy. sup{h(f(x)) | x ∈ X, f(x)Rg(y)})) ⊴
(r−∈ q(λy. sup{h(z) | z ∈ Z, zRg(y)})) ⊴
(r−∈ q((R↑[h]) ◦ g)) = (g∗(r)−∈ q(R↑[h])).

Assume f∗(t)Q(R)g∗(r), we prove t Q({(x, y) ∈ X × Y | f(x)Rg(y)}) r. Let
h : X → A and q ∈ Q, then (t−∈ q(h)) ⊴
(f∗(t)−∈ q(λz. sup{h(x) | x ∈ X, f(x) = z})) ⊴
(g∗(r)−∈ q(R↑[(λz. sup{h(x) | x ∈ X, f(x) = z})])) ⊴
(g∗(r)−∈ q(λw. sup{sup{h(x) | x ∈ X, f(x) = z} | z ∈ Z, zRw}) ⊴
(g∗(r)−∈ q(λw. sup{h(x) | x ∈ X, f(x)Rw}) =
(r−∈ q(λy. sup{h(x) | x ∈ X, f(x)Rg(y)})) =
(r−∈ q({(x, y) ∈ X × Y | f(x)Rg(y)}↑[h])).

We will call Q(−) the Q-relator. The following lemma gives an alternative de�nition
of the Q-relator. This uses the quantitative generalisation of right-set (R↑[h]) as de�ned
just above Lemma 6.3.8.

Lemma 6.4.3. If all modalities q ∈ Q are leaf-monotone, then for any R ⊆ X × Y :

tQ(R) r ⇐⇒ ∀h : X → A, h∗(t) ≼ (R↑[h])
∗
(r)

150 CHAPTER 6. QUANTITATIVE LOGIC

Proof. The `⇐' proof is done by unfolding the de�nition of ≼ with the identity function
id : A →⊴ A.

For the `⇒' proof, assume tQ(R) r, take h : X → A, we need to prove h∗(t) ≼
(R↑[h])

∗
(r). Let v : A →⊴ A and q ∈ Q, then h∗(t)−∈ q(v) = t−∈ q(v ◦ h) ⊴

r−∈ q(R↑[(v ◦ h)]). Now, for any y ∈ Y , (R↑[(v ◦ h)])(y) = sup{v(h(x)) | xR y} ⊴
v(sup{h(x) | xR y}) since v is monotone. Hence, since q is leaf-monotone,
h∗(t)−∈ q(v) ⊴ (R↑[h])

∗
(r)−∈ q(v). We conclude that h∗(t) ≼ (R↑[h])

∗
(r).

An applicative Q-simulation is an applicative O-simulation from De�nition 4.2.1,
using the relator Q(−) in place of O(−).

Using Lemma 6.3.17, we can generalise the proof from Lemma 4.2.5 to establish:

Lemma 6.4.4. If all q ∈ Q are leaf-monotone, then ⊑+ is an applicative Q-simulation.

Proof. We establish that ⊑+ is a Q-simulation by proving it satis�es all the simulation
rules from De�nition 4.2.1.

1. N. If n ⊑+ m then T = (m |= {m}) ⊴ (n |= {m}), hence n = m.

2. UC. If thunk(M) ⊑+ thunk(N) then (force(thunk(M)) |= ϕ) =

(thunk(M) |= ⟨ϕ⟩) ⊴ (thunk(N) |= ⟨ϕ⟩) = (force(thunk(M)) |= ϕ),
hence force(thunk(M)) ⊑+ force(thunk(M)). By Lemma 6.3.4, since
|force(thunk(M))| = |M | and |force(thunk(N))| = |N | we conclude thatM ⊑+ N .

3. Σi∈I Ai. Assume (j, V) ⊑+ (k,W) then ((j, V) |= (j, κT)) = T hence
((k,W) |= (j, κT)) = T so k = j. For any ϕ ∈ Form(Aj) we now have
(V |= ϕ) = ((j, V) |= (j, ϕ)) ⊴ ((j,W) |= (j, ϕ)) = (W |= ϕ), so we conclude
that V ⊑+ W .

4. A×B. Assume (V, V ′) ⊑+ (W,W ′). For any ϕ ∈ Form(A) we have (V |= ϕ) =

((V, V ′) |= π0(ϕ)) ⊴ ((W,W ′) |= π0(ϕ)) = (W |= ϕ). We can conclude that
V ⊑+ W and with a similar proof V ′ ⊑+ W ′.

5. A → C. Assume M ⊑+ N and V : A, then (M V |= ϕ) ⊴ (M |= (V ↦→ ϕ)) ⊴
(N |= (V ↦→ ϕ)) ⊴ (N V |= ϕ). So M V ⊑+ N V for all V : A.

6. FA. Assume M ⊑+ N , q ∈ Q and D : Terms(A) → A. We use Lemma 6.3.17 to
�nd a formula ϕD such that (V |= ϕD) = (⊑+↑

[D])(V). By re�exivity of ⊑+, we
have D(V) ⊴ (⊑+↑

[D])(V), so by leaf-monotonicity and M ⊑+ N it holds that:

|M | −∈ q(D) ⊴ (M |= q(ϕD)) ⊴ (N |= q(ϕD)) = |N | −∈ q(⊑+↑
[D]).

We can conclude that |M |Q(⊑+
A)|N |.

7. Πi∈I Ci. Assume M ⊑+ N . Take some j ∈ I, then for any ϕ ∈ Form(Cj) we
have (M j |= ϕ) = (M |= (j ↦→ ϕ)) ⊴ (N |= (j ↦→ ϕ)) = (N j |= ϕ). Hence
M j ⊑+ N j.

6.4. APPLICATIVE Q-SIMULATIONS 151

Note that the above result can be expanded in a straightforward way to show that the
characterisations of Lemmas 3.4.3 and 4.1.4 also hold for the quantitative logics with
leaf-monotone modalities. The above proof works for the general logic as well. Hence
we get the following result:

Lemma 6.4.5. If all q ∈ Q are leaf-monotone, then ≡ is an applicative Q-bisimulation.

Like in Lemma 4.2.6, we prove that any simulation is a subset of ⊑+ using an
induction on formulas. We say a well-typed relationR preserves a formula ϕ... ∈ Form(E...)

if, for any P..., R... ∈ Terms(E...), P...RE... R... =⇒ (P... |= ϕ...) ⊴ (R... |= ϕ...).

Lemma 6.4.6. If all q ∈ Q are leaf-monotone, then any applicative Q-simulation is a

subset of ⊑+.

Proof. Let R be an applicative O-simulation. We prove by induction on formulas
ϕ... ∈ U+ that R preserves ϕ.... Given this, the result is immediate. We look at the
cases for ϕ..., and assume as induction hypothesis that R preserves any subformula of ϕ....

1. {n} ∈ Form(N), V RNW =⇒ (V =W) =⇒ (V |= {n}) ⊴ (W |= {n}).

2. ⟨ϕ⟩ ∈ Form(UC), thunk(M)RUC thunk(N) =⇒ M RCN =⇒
(thunk(M) |= ⟨ϕ⟩) = (M |= ϕ) ⊴ (N |= ϕ) = (thunk(N) |= ⟨ϕ⟩), using
Lemma 6.3.4.

3. (j, ϕ) ∈ Form(Σi∈I Ai), assume (k, V)RΣi∈I Ai (h,W) =⇒ (k = h = j). If
(k, V) |= (j, ϕ) = F we are �nished. If (k, V) |= (j, ϕ) ̸= F then k = j, so we get
(k = h = j) and V RAj W and hence ((k, V) |= (j, ϕ)) = (V |= ϕ) ⊴ (W |= ϕ) =

((h,W) |= (j, ϕ)).

4. π0(ϕ) ∈ Form(A × B), then (V, V ′)RA×B (W,W ′) =⇒ V RAW =⇒
((V, V ′) |= π0(ϕ)) = (V |= ϕ) ⊴ (W |= ϕ) = ((W,W ′) |= π0(ϕ)). Similarly
for π1(ϕ).

5. (V ↦→ ϕ) ∈ Form(A → C), M RA→CN =⇒ M V RCN V =⇒
(M |= (V ↦→ ϕ)) = (M V |= ϕ) ⊴ (N V |= ϕ) = (N |= (V ↦→ ϕ)).

6. q(ϕ) ∈ Form(FA), by induction hypothesis it holds that V RAW =⇒
(V |= ϕ) ⊴ (W |= ϕ), so (R↑[ϕ])(W) = sup{V |= ϕ | V : A, V RAW} ⊴
(W |= ϕ). Since M RFAN , it holds that |M | Q(RA) |N |, and hence
(M |= q(ϕ)) = JqK(|M |[|= ϕ]) ⊴ |N | −∈ JqK(R↑[ϕ]) ⊴ JqK(|N |[|= ϕ]) = (N |= q(ϕ)).

7. (j ↦→ ϕ) ∈ Form(Πi∈I Ci), M RΠi∈I Ci
N =⇒ M jRCj

N j =⇒
(M |= (j ↦→ ϕ)) = (M j |= ϕ) ⊴ (N j |= ϕ) = (N |= (j ↦→ ϕ)).

8.
⋁︁
X,
⋀︁
X ∈ Form(E...), let P...RE... P..., then by induction hypothesis it holds that.

for all ϕ... ∈ X, (P... |= ϕ...) ⊴ (R... |= ϕ...). So (P... |=
⋁︁
X) ⊴ (R... |=

⋁︁
X) and

(P... |=
⋀︁
X) ⊴ (R... |=

⋀︁
X).

152 CHAPTER 6. QUANTITATIVE LOGIC

9. κa ∈ Form(E...), then (V |= κa) = a ⊴ a = (W |= κa).

10. ϕ...⊵a ∈ Form(E...), let P...RE... R..., then by induction hypothesis (P... |= ϕ...) ⊴ (R... |= ϕ...),
so (P... |= ϕ...⊵a) ̸= F =⇒ (P... |= ϕ...) ⊵ a =⇒ (R... |= ϕ...) ⊵ a =⇒ (R... |= ϕ...⊵a) = T .

Lemma 6.4.7. If all q ∈ Q are leaf-monotone, then any applicative O-bisimulation is

a subset of ≡.

Proof. Assume R is an applicative O-bisimulation. We prove by induction on ϕ... ∈ U
that R preserves ϕ.... Since R is symmetric, the fact that R preserves ϕ... implies that
M RN =⇒ (M |= ϕ...) = (N |= ϕ...). We can reuse the proof of the previous lemma.
There is only one extra case in the induction of formulas:

12. ¬(ϕ...) ∈ Form(E...), if P...RE... R... then R...RE... P... so by induction hypothesis (R... |= ϕ...) ⊴
(P... |= ϕ...). Hence (P... |= ¬(ϕ...)) = ¬(P... |= ϕ...) ⊴ ¬(R... |= ϕ...) = (R... |= ¬(ϕ...)).

The following theorem is a consequence of the previous four lemmas.

Theorem 6.4.8 (The Generalised Coincidence Theorem). If all modalities q ∈ Q are

leaf-monotone, then the positive behavioural preorder⊑+ is Q-similarity, and the general

behavioural equivalence ≡ is Q-bisimilarity.

6.4.1 Q-relator properties

In order to prove the Generalised Compatibility Theorem (Theorem 6.3.15), we are
going to use the proof by Howe's method from Sections 4.4 and 4.5. This proof can
be directly applied, as long as the Q-relator satis�es the relator properties as given in
Section 4.3. So we will generalise the lemmas of that section from the Boolean setting
to the quantitative setting.

Lemma 6.4.9. Suppose all modalities q ∈ Q are tree-monotone (implied by Scott tree-

continuity). If tQ(R) r, t′ ≤ t, and r ≤ r′, then t′Q(R) r′.

Proof. Suppose tQ(R) r, t′ ≤ t, and r ≤ r′. Let q ∈ Q, and h : X → A, then
h∗(t′) ≤ h∗(t). So by tree-monotonicity, JqK(h∗(t′)) ⊴ JqK(h∗(t)), which since tQ(R) r

holds is below JqK((R↑[h])
∗
(r)). Since (R↑[h])

∗
(r) ≤ (R↑[h])

∗
(r′) we can conclude, again

using tree-monotonicity, that JqK(h∗(t′)) ⊴ JqK((R↑[h])
∗
(r′)).

Lemma 6.4.10. Given Scott tree-continuity for all modalities, then for t0 ≤ t1 ≤ . . .

and r0 ≤ r1 ≤ . . . : ∀n.(tnQ(R)rn) =⇒ (⊔ntn)Q(R)(⊔nrn).

Proof. Assume for all n ∈ N, tnQ(R)rn. Let r be ⊔nrn, then by Lemma 6.4.9 we can see
that ∀n ∈ N.tnQ(R)r since ∀n ∈ N.(rn ≤ r). Take an arbitrary h : X → A and q ∈ Q.
By Scott tree-continuity we have JqK(h∗(⊔ntn)) = JqK(⊔nh∗(tn)) ⊴

⋁︁
nJqK(h

∗(tn)). For

6.4. APPLICATIVE Q-SIMULATIONS 153

any n, since tnQ(R)r we know that JqK(R↑[h])
∗
(r) ⊵ JqK(h∗(tn)). Hence (R↑[h])

∗
(r) is

an upper bound to the sequence {JqK(h∗(tn))}n∈N, so JqK(R↑[h])
∗
(r) ⊵

⋁︁
nJqK(h

∗(tn)).
We can conclude that JqK(h∗(⊔ntn)) ⊴ JqK((R↑[h])

∗
(r)), for arbitrary h : X → A and

q ∈ Q, hence (⊔ntn)Q(R)r.

Lemma 6.4.11. Assume all modalities from Q are leaf-monotone. Then given two

relations R ⊆ X × Y , S ⊆ Z ×W and functions f : X → Z, g : Y → W such that

∀(x, y) ∈ X × Y. xR y ⇒ f(x)S g(y). Then it holds that tQ(R) r ⇒ f∗(t)Q(S) g∗(r).

Proof. Assume R,S, f and g as above, and let t, r be such that tQ(R) r. Take
h : Z → A, then h ◦ f : X → A, so by tQ(R) r it holds that for all q ∈ Q,
(f∗(t)−∈ q(h)) = JqK(h∗(f∗(t))) = JqK((h ◦ f)∗(t)) ⊴ JqK((R↑[(h ◦ f)])∗(r)).

Now we have that: (R↑[(h ◦ f)])(y) = sup{h(f(x)) | x ∈ X,xR y} ⊴
sup{h(f(x)) | x ∈ X, f(x)S g(y)} ⊴ sup{h(z) | z ∈ Z, z S g(y)} = (S↑[h])(g(y)). We
use leaf-monotonicity of q to conclude that (f∗(t)−∈ q(h)) ⊴ JqK((R↑[(h ◦ f)])∗(r)) ⊴
JqK((S↑[h])

∗
(g∗(r))) = (g∗(r)−∈ q(S↑[h])).

Lemma 6.4.12. Given a decomposable set of leaf-monotone modalities Q, then:

1. For all R ⊆ X × Y , x ∈ X, y ∈ Y : xR y =⇒ ⟨x⟩Q(R) ⟨y⟩.

2. For all R ⊆ X × Y , a ∈ T (T (X)), b ∈ T (T (Y)): aQ(Q(R)) b⇒ µaQ(R)µb.

Proof. The �rst property follows from the fact that if xR y then (R↑[h])(y) ⊵ h(x). So
for any q ∈ Q, by leaf-monotonicity, JqK(h∗(⟨x⟩)) = JqK(⟨h(x)⟩) ⊴ JqK(⟨(R↑[h])(y)⟩) =
JqK((R↑[h])

∗
(⟨y⟩)).

For the second property, assume aQ(Q(R)) b and let h : X → A and q ∈ Q. We
want to prove that JqK(h∗(µa)) ⊴ JqK((Q(R)↑[h])

∗
(µb)). Note that h∗(µa) = µ(h∗∗(a))

and (Q(R)↑[h])
∗
(µb) = µ((Q(R)↑[h])

∗∗
(b)), so by decomposability it is su�cient to

prove that h∗∗(a) ⋞ (Q(R)↑[h])
∗∗
(b).

Let H ∈ QBS(TA) and q′ ∈ Q, we want to prove that (h∗∗(a)−∈ q(H)) ⊴
((Q(R)↑[h])

∗∗
(b)−∈ q(H)). Since H∗(h∗∗(a)) = (H ◦ h∗)∗(a), H ◦ h∗ : T (X) → A,

and aQ(Q(R)) b, we know that (h∗∗(a) −∈ q(H)) = (a −∈ q(H ◦ h∗)) ⊴
(b−∈ q(Q(R)↑[(H ◦ h∗)])).

Now, it holds that (Q(R)↑[(H ◦ h∗)])(r) = sup{H(h∗(t)) | t ∈ T (X), tQ(R) r} ⊴
sup{H(h∗(t)) | t ∈ T (X), h∗(t) ≼ (R↑[h])

∗
(r)} ⊴

sup{H(t) | t ∈ T (A), t ≼ (R↑[h])
∗
(r)} ⊴ H((R↑[h])

∗
(r)), using Lemma 6.4.3 and

the fact that H ∈ QBS(TA). So by leaf-monotonicity, and Lemma 6.3.16,
(b−∈ q(Q(R)↑[(H ◦ h∗)])) ⊴ (b−∈ q(H ◦ (R↑[h])

∗
)) = ((Q(R)↑[h])

∗∗
(b)−∈ q(H)).

We have proven that h∗∗(a) ⋞ (Q(R)↑[h])
∗∗
(b), so by decomposability it holds that

µ(h∗∗(a)) ≼ µ((Q(R)↑[h])
∗∗
(b)). We get the desired result by unfolding the de�nition

of ≼ using q and the identity function id : A →⊴ A.

Note that Q(⊴) = ≼ and Q(⊴) = ⋞. So from Lemma 6.4.12 we can conclude that:

Corollary 6.4.13. If all modalities q ∈ Q are leaf-monotone, then Q is decomposable

if and only if ∀R ⊆ X × Y,∀r, r′ ∈ TTA, rQ(Q(R)) r′ ⇒ µrQ(R)µr′.

154 CHAPTER 6. QUANTITATIVE LOGIC

We have all the su�cient properties for the relator Q(−) to prove the following
theorem, using the same proofs by Howe's method as for Theorems 4.5.2 and 4.5.5

Theorem 6.4.14. The open extensions of applicative Q-similarity and applicative Q-

bisimilarity are compatible if Q is a decomposable set of Scott tree-continuous and leaf-

monotone modalities.

6.5 Variations

We end this chapter with some thoughts on possible variations of the quantitative logic.

6.5.1 The Boolean logic revisited

The quantitative logic de�ned in this chapter is a generalisation of the Boolean logic
de�ned in Chapter 3. In other words, any logic for programs with e�ects de�ned in
that chapter can be recast as a quantitative logic in the sense of this chapter. As such,
Theorems 4.5.2 and 4.5.5 can be seen as instances of Theorem 6.4.14 given above.

Note �rst that the Booleans B form a complete lattice with involution. Let Σ be
a signature and O a set of modalities on that signature. The main di�erence between
the Boolean and quantitative formulations of the logics is that a Boolean modality o is
given by a subset JoK ⊆ T1, not by function from TB to B, or subset of TB. The set TB
distinguishes between divergence ⊥ and formula dissatisfaction F. In our translation
from Boolean modalities to quantitative modalities, we must cope with this distinction.

For o ∈ O, we de�ne qo as the quantitative modality, whose denotation gives a
function JqoK : TB → B, such that:

JqoK(t) = T ⇐⇒ t ∈ o({T}).

We take QO := {qo | o ∈ O} as our set of quantitative modalities over Σ using the
truth space B. We check how the conditions for compatibility on O carry over to the
generalised conditions on QO.

Lemma 6.5.1. If o is leaf-upwards closed, then qo is leaf-monotone.

Proof. For t, t′ ∈ TB such that t ⊴TA t′, it holds that t[∈ {T}] ≤ t′[∈ {T}] ≤
t[⊥ ↦→ ⟨∗⟩] = t[∈ {T}][⊥ ↦→ ⟨∗⟩]. So since o is leaf upwards closed, if t ∈ o({T}), then
t′ ∈ o({T}).

Lemma 6.5.2. If o is Scott open, then qo is Scott tree-continuous.

Proof. For ti ∈ TB, t0 ≤ t1 ≤ t2 ≤ . . . , it holds that t0[∈ {T}] ≤ t1[∈ {T}] ≤
If JqoK(

⨆︁
n tn) = T , then (

⨆︁
n tn)[∈ {T}] ∈ JoK hence

⨆︁
n(tn[∈ {T}]) ∈ JoK, so since o

is Scott open there is an n ∈ N such that tn[∈ {T}] ∈ JoK and hence JqoK(tn) = T .
We can conclude that

⋁︁
mJqoK(tn) = T , hence JqoK(

⨆︁
n tn) ⊴

⋁︁
mJqoK(tn). The other

direction follows by leaf-monotonicity of qo from the previous lemma.

6.5. VARIATIONS 155

Assume now that all o ∈ O are leaf upwards closed. For h : B →⊴ B monotone,
t−∈ qo(h) holds if and only if t ∈ o(h−1{T}). Considering that h−1{T} can only be
{T}, {F,T}, or ∅ we can see that:

t ≼QO t′ ⇐⇒ t[∈ {T}] ≼O t′[∈ {T}] ∧ t[∈ {F,T}] ≼O t′[∈ {F,T}]

It seems di�cult to compare the Boolean notion of decomposability with the quantita-
tive notion of decomposability via their de�nition using the ≼ and ⋞ relations. However,
using their equivalent formulations in terms of relators from Corollary 4.3.3 and 6.4.13,
we can see that the two notions of decomposability coincide.

Lemma 6.5.3. The relators O(−) and QO(−) are identical.

Proof. Let R ⊆ X × Y , t ∈ TX and t′ ∈ TY .
Assume tO(R) t′ and for some h : X → B and qo ∈ QO it holds that (t−∈ qo(h)) =

T . Then t ∈ o(h−1({T})), so t′ ∈ o(R↑[(h−1({T}))]). Now, y ∈ (R↑[h−1({T})]) holds
if and only if there is an x ∈ X such that h(x) = T and xR y, which holds precisely
when (R↑[h])(y) = T . So t′ ∈ o((R↑[h])

−1
({T})), hence (t′−∈ qo(R↑[h])) = T .

Assume tQO(R) t′ and for some A ⊆ X and o ∈ O it holds that t ∈ o(A). Let
h : X → B be such that h(x) = T if and only if x ∈ A. Then t ∈ o(h−1({T})) and
hence (t−∈ qo(h)) = T . So (t′−∈ qo(R ↑[h])) = T which, by the same reasoning as
above, means t′ ∈ o(R↑[(h−1({T}))]) and hence t′ ∈ o(R↑[A]).

Using the equivalent formulations of decomposability using the relators, given in
Corollary 4.3.3 and 6.4.13, we can derive the following corollary.

Corollary 6.5.4. If all o ∈ O are leaf-upwards closed, then O is decomposable if and

only if QO is decomposable.

6.5.2 In�nitary vs �nitary quantitative formula connectives

In Sections 5.1 and 5.2 we have seen di�erent cases in which the size of the cardinality
of Boolean connectives for the Boolean logics could be reduced without altering the
induced logical preorder. In this subsection, we will attempt to prove similar results
for the quantitative logic, trying to reduce the size of the cardinalities of suprema and
in�ma without changing the induced behavioural preorder.

Section 5.1 for example shows us how we may remove disjunctions, conjunctions and
negations for computation formulas without changing the resulting equivalences. We
adapt this result to the quantitative logic, where moreover, we also remove constant
formulas and threshold formulas from the value logic. We adapt De�nition 5.1.2.

De�nition 6.5.5. For each quantitative logic L, we de�ne the logic L∗ as the largest
fragment of L such that all computation formulas are basic formulas.

In other words, L∗ does not have any suprema, in�ma, involutions, constant formu-
las, or threshold formulas at computation types.

156 CHAPTER 6. QUANTITATIVE LOGIC

Proposition 6.5.6. The fragment U∗ of U induces the same logical equivalence as U .
Similarly, the fragment U+∗ of U+ induces the same logical preorder as U .

Proof. The proof is similar to the proof of the Boolean case, using the induction on
formulas from Lemma 5.1.3. The only alteration to that proof is the addition of new
quantitative formula constructors. Such cases can be dealt with by noting that formula
constructors like ⟨−⟩ and (V ↦→ (−)) commute with formula constructor (−)⊵a, and
formulas like ⟨κa⟩ and (V ↦→ κa) are equivalent to κa (of the appropriate type).

The above result can alternatively be proven by establishing that both logical equiv-
alences ≡ and ≡U∗ are equal to Q-bisimilarity. This method is followed in the proof
of the following result, which looks at what may be a more interesting reduction of the
logic, involving the use of Scott leaf-continuity from De�nition 6.3.6. Recall that all of
the given examples of quantitative modalities satisfy this property.

We borrow the notation (Q, a, b, c) for logics from Section 5.2 as de�ned in De�-
nition 5.2.1, but adapt it to the quantitative logic. In particular, a ∈ {

⋁︁
,∨,⊥} de-

notes the possible sizes for suprema, b ∈ {
⋀︁
,∧,⊤} the possible sizes for in�ma, and

c ∈ {¬,+} denotes whether or not involutions are included in the logic. In particular,
(Q,

⋁︁
,
⋀︁
,¬) = U∗ and (Q,

⋁︁
,
⋀︁
,+) = U+∗.

Proposition 6.5.7. If all q ∈ Q are Scott leaf-continuous, then (Q,∨,
⋀︁
,¬) induces

the same logical equivalence as U , and (Q,∨,
⋀︁
,+) induces the same logical preorder

as U+.

Proof. Instead of doing an induction on the structure of formulas, we instead just adapt
the proof of Theorem 6.4.8 to see that the resulting logical preorder still gives Q-
bisimilarity (and Q-similarity). Let L be either (Q,∨,

⋀︁
,¬) or (Q,∨,

⋀︁
,+). The proofs

for the two logics are similar.
Most of the proof of Theorem 6.4.8 goes through for L. The only problem is

case 6 of the proof of Lemma 6.4.4, where we need to show that M ⊑L N implies
|M |Q(⊑L)|N |. The proof makes use of Lemma 6.3.17, which found for each quan-
titative predicate D : Terms(A) → A a formula ϕ...D ∈ Form(A) such that for all
V ∈ Terms(A), (V |= ϕ...D) = (⊑↑[D])(V). This formula was de�ned as a countable
supremum ϕD :=

⋁︁
{κD(V) ∧ χV | V ∈ Terms(A)}. Note that Lemma 6.3.3 still works

in L, so characteristic formulas χV exist in the logic. However, ϕ...D /∈ L.
We can however do an approximation of ϕ...D, using an enumeration on terms,

specifying an injective function #(−) : Terms(A) → N. For a quantitative predicate
D : Terms(A) → A we take a sequence of formulas ϕnD ∈ Form(A), de�ned in the
following way:

ϕnD :=
⋁︂

{κD(V) ∧ χV | V ∈ Terms(A),#V < n},

a �nite supremum over the �rst n terms of typeA. So (⊑L
↑[D])(V) = limn→∞ V |= ϕnD.

We use this to adapt case 6 of the proof of Lemma 6.4.4. IfM ⊑L N : FA, then for
any q ∈ Q and D : Terms(A) → A it holds that ∀n, JqK(|M |[|= ϕnD]) ⊴ JqK(|N |[|= ϕnD]),

6.5. VARIATIONS 157

which by Scott leaf-continuity means that |M | −∈ q(⊑L
↑[D]) ⊴ |N | −∈ q(⊑L

↑[D]). With
leaf-monotonicity we have |M | −∈ q(D) ⊴ |M | −∈ q(⊑L

↑[D])), so we have checked the
relevant case for proving that ⊑L is a Q-simulation.

We conclude that ⊑L is Q-bisimilarity (or similarity), and hence equal to ≡ (or
⊑+).

When we talk about Scott leaf-continuous modalities, we consider limits of increasing
sequence of trees. We could instead consider lower leaf-continuous modalities, which
considers descending sequences.

De�nition 6.5.8. A modality q is lower leaf-continuous if for any descending chain
of trees in the leaf-order t0 ⊵TA t1 ⊵TA t2 ⊵TA . . . , it holds that JqK(⊓T (⊴)

n tn) =⋀︁
nJqK(tn).

The examples of probability, probability with score, global store, probability with
global store, and timer all have quantitative modalities which are lower leaf-continuous.
Moreover, any combination of the e�ects listed above with error according to Subsec-
tion 6.2.7 also yield lower leaf-continuous modalities. However, modalities resulting
from combinations with angelic nondeterminism, like E♢, are not lower leaf-continuous.

Proposition 6.5.9. If all modalities are leaf-monotone and lower leaf-continuous, then

(Q,
⋁︁
,∧,¬) induces the same logical equivalence as U , and (Q,

⋁︁
,∧,+) induces the

same logical preorder as U+.

Note that the �rst condition is leaf-monotonicity, not leaf-continuity.

Proof. Let L be the logic (Q,
⋁︁
,∧,¬) (or the logic (Q,

⋁︁
,∧,+)). This proof follows the

same pattern as the proof of Proposition 6.5.7. However, here we have the problem that
characteristic formulas χV as de�ned in Lemma 6.3.3 use countable in�ma. As such,
ϕD :=

⋁︁
{κD(V) ∧ χV | V ∈ Terms(A)} is not in L, and we need to approximate these

formulas in a di�erent way, this time from above.
First we de�ne for each V a formula χnV , the �nite approximation of the

characteristic formula from Lemma 6.3.3 given by the �nite conjunction χnV :=⋀︁
{ψW⊵V |=ψW | V ̸⊑L W,#W ≤ n}, where for each W such that V ̸⊑L W , we choose

a formula ψW such that (V |= ψW) ̸⊴ (W |= ψW). We get that:

(W |= χnV) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
T if V ⊑L W

F if V ̸⊑L W and #W ≤ n

? otherwise.

The result is not speci�ed when V ̸⊑L W and #W > n. However, we do know
that for any n ∈ N it holds that (W |= χn+1

V) ⊴ (W |= χnV). So V ⊑L W ⇐⇒
∀n.(W |= χnV) = T ⇐⇒ (W |= χ#W

V) = T . For a quantitative predicate
D : Terms(A) → A, let χnD :=

⋁︁
{κD(W) ∧ χnW | W ∈ Terms(A)}. From the for-

mulation, we know that for any n ∈ N, (V |= χn+1
D) ⊴ (V |= χnD). We will prove that⋀︁

n χ
n
D = (⊑L

↑[D]).

158 CHAPTER 6. QUANTITATIVE LOGIC

Fix some value term V , then for anyW and m ≥ #V we have (V |= χmW) = T ⇐⇒
W ⊑L V . We can derive that:

(⊑L
↑[D])(V) = sup{D(W) |W ⊑L V } = sup{D(W) | (V |= χmW) = T} = (V |= χmD)

Since for k ≤ n < m we still have that (V |= χmD) ⊴ (V |= χkD), we can derive that
(⊑L

↑[D])(V) = (V |=
⋀︁
n χ

n
D).

We conclude the proof by observing that for a lower leaf-continuous modality q it
holds that:

∀n ∈ N. JqK(|M |[|= ϕnD]) ⊴ JqK(|N |[|= ϕnD])

⇔ (JqK(|M |[|=
⋀︂
n

ϕnD]) ⊴ JqK(|N |[|=
⋀︂
n

ϕnD])) by lower leaf-continuity

⇔ (JqK(|M |[|= (⊑L
↑[D])]) ⊴ JqK(|N |[|= (⊑L

↑[D])])) by the above equality.

so we can adapt the proof of Proposition 6.5.7.

Last but not least, we can combine the proofs of the above to Proposition.

Proposition 6.5.10. If all modalities are Scott leaf-continuous and lower leaf-

continuous, then (Q,∨,∧,¬) induces the same logical equivalence as U , and (Q,∨,∧,+)

induces the same logical preorder as U+.

Proof. Let L = (Q,∨,∧,¬) (or L = (Q,∨,∧,+)), and following the proof of Propo-
sition 6.5.7 we need to prove that ⊑L is an applicative Q-simulation, speci�cally by
proving the sixth condition for applicative Q-simulations.

This can be done by combining the methods of the proofs from the previ-
ous two propositions. In both proofs we de�ned for each quantitative predicate
D : Terms(A) → A a sequence of approximations of (⊑L

↑[D]) de�ned with formu-
las from L. In the general logic, (⊑L

↑[D]) can be de�ned with the formula⋁︁
{κD(V) ∧ χV | V ∈ Terms(A)}, with χV :=

⋀︁
{ψW⊵(W |=ψW)

| V ̸⊑ W}, where for each
W such that V ̸⊑ W we chose a formula ψW such that (V |= ψV) ̸⊴ (V |= ψW).
However, this formula both has an in�nite supremum and in�nite in�ma, and hence is
not in L. In the proof of Proposition 6.5.7, we did an approximation of the outermost
supremum, and in the proof of Proposition 6.5.9, we did an approximation of the in�ma
used by the characteristic formulas χV . In this proof, we need to combine these two
approximations.

Remember that we have an injective function # : Terms(A) → N. Firstly, we de�ne
for each V a formula χnV ∈ L, the �nite approximation of the characteristic formula as
de�ned in the proof of Proposition 6.5.9 using the function # (but taking the formulas
ψW from L instead). So V ⊑L W ⇐⇒ ∀n.(W |= χnV) = T ⇐⇒ (W |= χ#W

V) = T .
Hence, it holds that (W |=

⋀︁
n χ

n
V) = T ⇔ (V ⊑L W).

Secondly, take some quantitative predicate D : Terms(A) → A, and for each n ∈ N
we de�ne the approximation Dn : Terms(A) → A sending V to D(V) if #(V) ≤ n,
otherwise to F. For each n,m ∈ N we de�ne the formula ϕn,mD ∈ Form(A)L as follows:

ϕn,mD :=
⋁︂

{κD(V) ∧ χnV | V ∈ Terms(A), #V ≤ m} ∈ L.

6.5. VARIATIONS 159

Note that this is a �nite suprema over formulas from L, hence it is itself in L.
Let V ∈ Terms(A) such that #V ≤ m. Then (V |=

⋀︁
n ϕ

n,m
D) =⋀︁

n

⋁︁
{(V |= (κD(W) ∧ χnW)) | W ∈ Terms(A), #W ≤ m} =⋀︁

n

⋁︁
{D(W) | W ∈ Terms(A), #W ≤ m, (V |= χnW) = T} =⋀︁

n≤#V

⋁︁
{D(W) | W ∈ Terms(A), #W ≤ m, (V |= χnW) = T} =⋁︁

{D(W) | W ∈ Terms(A), #W ≤ m, (V |= χ#V
W) = T} =⋁︁

{D(W) | W ∈ Terms(A), #W ≤ m, W ⊑L V } =⋁︁
{Dm(W) | W ∈ Terms(A), W ⊑L V }.
Hence (V |=

⋀︁
n ϕ

n,m
D) = (⊑L

↑[Dm])(V), so we can derive that (V |=
⋁︁
m

⋀︁
n ϕ

n,m
D) =

(⊑L
↑[D])(V). Note that for eachm ∈ N, {ϕn,mD }n∈N is a decreasing sequence of formulas

(their satisfaction never increases), and that {
⋀︁
n ϕ

n,m
D }m∈N is an increasing sequence of

formulas. We �nish the proof by observing that, for a Scott leaf-continuous and lower
leaf-continuous modality q it holds that:

∀n,m, JqK(|M |[|= ϕn,mD]) ⊴ JqK(|N |[|= ϕn,mD])

⇔ ∀m, JqK(|M |[|=
⋀︂
n

ϕn,mD]) ⊴ JqK(|N |[|=
⋀︂
n

ϕn,mD]) by Scott leaf-continuity

⇔ JqK(|M |[|=
⋁︂
m

⋀︂
n

ϕn,mD]) ⊴ JqK(|N |[|=
⋁︂
m

⋀︂
n

ϕn,mD]) by lower leaf-continuity

⇔ JqK(|M |[|= (⊑L
↑[D])]) ⊴ JqK(|N |[|= (⊑L

↑[D])]) by the observed equality

so we can adapt the proof of Proposition 6.5.7.

6.5.3 A short note on involutions

We end this chapter with a �nal remark. We required the inclusion of an involution for
our truth space in our formulation of the general logic. However, upon closer inspection,
it is not strictly necessary to include an involution. It is enough to add a simpler version
of negation ¬ where ¬F = T and for any a ∈ A where a ̸= F, ¬a = F. So we can still
formulate the general behavioural equivalence for examples of e�ects with truth spaces
without involutions, like timer and input/output as given in Subsections 6.2.5 and 6.2.8.

As an example of how the proofs in this chapter can be adapted for this new notion
of negation, we look at Lemma 6.3.2, which says that ⊑ is symmetric. We give an
alternative proof to this Lemma, which only assumes that ¬F = T and ¬T = F.

Alternative proof of Lemma 6.3.2. Suppose P... ⊑ R.... If (R... |= ϕ...) ⊵ a then (R... |= ϕ...⊵a) =

T and (R... |= ¬(ϕ...⊵a)) = F. If moreover (P... |= ϕ...) ̸⊵ a, then (P... |= ϕ...⊵a) = F,
so (R... |= ϕ...⊵a) = F and (R... |= ¬(ϕ...⊵a)) = T , so by P... ⊑ R... it holds that F =

(R... |= ¬(ϕ...⊵a)) ⊵ T . This gives us a contradiction, hence (R... |= ϕ...) ⊵ a implies
(P... |= ϕ...) ⊵ a. We conclude that (R... |= ϕ...) ⊴ (P... |= ϕ...), and hence R... ⊑ P....

7

Polymorphic and recursive types

The particular language we used to study behavioural equivalence for e�ectful programs
was a call-by-push-value language with general recursion. It is however not di�cult to
change or add to the language, adapting the de�nition of the logic and behavioural
equivalence appropriately.

In this chapter, we focus on extending the language in two signi�cant ways, by
adding new type constructors and terms for universal polymorphic types and recursive
types. When extending the language in such a way, the logic needs to be extended as
well in order to specify a behavioural equivalence on the types created by the new type
constructors. This can be done in a natural way, re�ecting the behaviour of terms of
such types. For simplicity, we will only focus on extending the quantitative logic from
Chapter 6, since it is more general then the Boolean logic from Chapter 3. The Boolean
logics could however be extended in a similar way.

The proof for the Generalised Compatibility Theorem, Theorem 6.3.15, can be ex-
tended, establishing that the logic for the extended language induces a compatible
program equivalence. To extend the proof of that theorem for such extended languages,
it is necessary to break into some of the quite technical proofs from Chapter 4 in partic-
ular. We will try to do this in a modular way for universal polymorphic and recursive
types. These examples of extensions are indicative of how the language can be extended
in di�erent ways.

So we extend the language in two main ways, adding universal polymorphic and
recursive types, both of which are powerful constructions. With recursive types for
instance, it is possible to express the untyped lambda calculus, which is another language
for which e�ects and applicative bisimilarity have been widely studied (e.g., in [14]).

7.1 Adding type constructors

We �rst lay out the general scheme for extending the language and the logic U , giving
a roadmap for proving that the Generalised Compatibility Theorem still holds. This
is done in four di�erent steps, which require looking at three di�erent chapters in this
thesis.

161

162 CHAPTER 7. POLYMORPHIC AND RECURSIVE TYPES

(I) Firstly, we add the new type constructors, with their terms, typing rules, term
reductions and possibly new stacks and stack reductions. This will expand the
operational semantics from Chapter 2.

(II) We then de�ne the appropriate basic logical formulas for the new types, for in-
stance using the new term introduction rules to lift formulas. This extends the
de�nition of the logic in Subsection 6.1.1.

(III) Next, we de�ne clauses for the new types (new simulation rules) to the de�nition of
applicativeQ-simulation (De�nition 4.2.1). Moreover, we add appropriate cases to
Lemmas 6.4.4 and 6.4.6, in order to prove the Generalised Coincidence Theorems,
Theorems 6.4.8, for the extended language.

(IV) Lastly, we want to prove that applicative Q-similarity and Q-bisimilarity are com-
patible. To do this, we adapt the proof by Howe's method from Section 4.4 in
three steps, in order to re-establish Proposition 4.4.19:

a) Prove that the Howe closure of an applicative Q-simulation satis�es the new
simulation rule from step (III).

b) If there is a new stack constructor formulated in step (I), add it as a frame
constructor to De�nition 4.4.10, and extend De�nition 4.4.13 appropriately.
Verify that lemmas related to frames still hold, mainly Lemma 4.4.15 as the
other lemmas tend to follow directly.

c) For any new computation term not constructed by a frame, prove its case in
the Lemma 4.4.18 in order to verify the Key Lemma.

This proves that the Howe closure of an applicative Q-simulation is an applica-
tive Q-simulation, so we can conclude the proof by Howe's method as done in
Section 4.5.

These four steps enable us to appropriately extend the language, and give it a
compatible behavioural equivalence. We will now focus on the particular extensions of
the language involving universal polymorphic types and recursive types. We start by
adding type variables, which establishes a basis upon which we can de�ne the new type
constructors and terms.

7.1.1 Type variables

We introduce type variables α, β, . . . for value types and α, β, . . . for computation types,
to enrich our language, and add type judgements for constructing them. Type Contexts
are recursively de�ned as follows:

∆ := ε | ∆, α | ∆, β

7.2. UNIVERSAL POLYMORPHIC TYPES 163

We write ∆ ⊢ A to say A is a value type in context ∆, and ∆ ⊢ C to say C is a
computation type in context ∆. We have new judgements for types:

∆, α,∆′ ⊢ α ∆, β,∆′ ⊢ β ∆ ⊢ 1 ∆ ⊢ N

All other type judgements follow the type introduction rules, e.g.:

∆ ⊢ C

∆ ⊢ UC

∆ ⊢ A ∆ ⊢ C

∆ ⊢ A → C

Given some type E... and some value type A, we write E...[A/α] for the substitution
of A for each instance of α in E.... Similarly, we write E...[C/β] for the substitution of
computation type C for β in E.... In the same way, we de�ne P...[A/α] and P...[C/β] for
such substitutions in some term P.... By construction, we have the following lemma for
type substitution:

Lemma 7.1.1. If ∆, α ⊢ E... and ∆ ⊢ A, then ∆ ⊢ E...[A/α].

We call a type E... closed if it is of the empty context ε ⊢... E.... We introduce the
convention that a type is closed unless mentioned otherwise. We will only de�ne a
logic and equivalence for closed types, and their closed terms, similar to how we only
have a logic for closed terms in this thesis. Type variables are used to create type
constructors for universal polymorphic types and recursive types, both giving a wide
supply of interesting programs.

In the speci�cation of behavioural equivalence for these new types, one has to keep
in mind that the formulas cannot be constructed by induction on types, they are con-
structed mutually inductively over all types simultaneously, as an induction on formulas.

7.2 Universal polymorphic types

By allowing us to build terms using type variables, we can express more general phe-
nomena in the programming language. Take for instance the return function which,
in a Church-style simply typed system (as used in this thesis), can only be the return
function on a speci�c closed type (e.g., N → FN). However, there is a more general
concept of return function, typed polymorphically by ∀α. α→ Fα. In order to explore
the behaviour of such general concepts, we introduce the universal polymorphic types.

We add universal polymorphic types over both value type variables and computa-
tion type variables. We consider both such polymorphic types as computation types,
following the precedent set by function- and Π-types.

∆, α ⊢ C

∆ ⊢ ∀α.C
∆, β ⊢ C

∆ ⊢ ∀β.C

Here, α is bound in ∀α.C, and β is bound in ∀β.C. We write TV(E...) and TV(Γ) for
the set of free type variables occurring in E... and Γ respectively. We de�ne new terms;

164 CHAPTER 7. POLYMORPHIC AND RECURSIVE TYPES

giving constructors and deconstructors for the new types, together with their typing
judgements, which are added to Figure 2.1:

Γ ⊢ M : C α /∈ TV(Γ)

Γ ⊢ Λα.M : ∀α.C
Γ ⊢ M : ∀α.C α /∈ TV(Γ) ∪ TV(A)

Γ ⊢ MA : C[A/α]

Γ ⊢ M : C β /∈ TV(Γ)

Γ ⊢ Λβ.M : ∀β.C
Γ ⊢ M : ∀β.C β /∈ TV(Γ) ∪ TV(D)

Γ ⊢ MD : C[D/β]

Here, α is bound in Λα.M , and β is bound in ∀β.C.
As an example of a new term, the polymorphic identity function can be given by

the return function Λα. (λx : α. return(x)) : ∀α. (α → Fα) and the force function
Λβ. (λx : Uβ. force(x)) : ∀β. (Uβ → β), for call-by-value and call-by-name style respec-
tively.

We de�ne the operational semantics on closed terms of closed types by adding new
rules to the already de�ned reduction relation. Since both ∀α.C and ∀β.C are com-
putation terms, they contain term that may be reduced. So we �rst identify what they
can reduce to, their terminal terms; expanding De�nition 2.1.3 with the following two
terms:

Λα.M | Λβ.M .

In order to evaluate terms MA and MC, the term M needs to be evaluated �rst. As
such, we need to add two new stack constructors:

S ::= · · · | S ◦ −A | S ◦ −C , where (S ◦ −E...){M} = S{ME...} .

The stack reduction relation↣ from De�nition 2.1.7 is extended to include these terms
in the following way:

8. (S,MA) ↣ (S ◦ −A,M).

9. (S ◦ −A,Λα.M) ↣ (S,M [A/α]).

8'. (S,MC) ↣ (S ◦ −C,M).

9'. (S ◦ −D,Λβ.M) ↣ (S,M [D/β]).

These new rules induce a new operational semantics | − | : Terms(C) → T (Tct(C)).
This �nishes step (I) as laid out in Section 7.1. We will now turn towards step (II),
extending the quantitative logic.

7.2.1 Logic for universal polymorphic types

Considering the similarity with function types, it is not hard to identify what should
be considered a behavioural property of terms of universal polymorphic types. As such,
we de�ne the basic quantitative formulas for the new types as follows, adding two new
rules to Figure 6.1:

α ⊢ C ϕ ∈ Form(C[A/α])

A ↦→ ϕ ∈ Form(∀α.C)

β ⊢ C ϕ ∈ Form(C[D/β])

D ↦→ ϕ ∈ Form(∀β.C)

7.2. UNIVERSAL POLYMORPHIC TYPES 165

Note that formulas are only de�ned over closed types. Since we are extending the
quantitative logic, satisfaction of such formulas is given by the following rules, extending
the de�nition given at the end of Subsection 6.1.1.

M |= A ↦→ ϕ := MA |= ϕ M |= D ↦→ ϕ := MD |= ϕ .

With the extended quantitative logic, we can de�ne the behavioural equivalence ≡
and positive behavioural preorder ⊑+ for the extended language, as de�ned in De�ni-
tion 6.3.1 and the paragraph below it.

Firstly, note that the proof of Lemma 3.4.1 can be easily adapted to work for the
new polymorphic computation types, hence for M,N : ∀α.C we have that |M | = |N |
implies M ≡ N . We also get the following immediate classi�cation result for the new
types (c.f. extending Lemma 3.4.3):

Lemma 7.2.1. For R either ⊑+ or ≡, it holds that:

8. M R∀α.CN ⇐⇒ ∀A, MARC[A/α]NA.

8'. M R∀β.CN ⇐⇒ ∀D, MARC[D/β]NA.

Proof. Suppose M ⊑+ N : ∀α.C, then (M |= A ↦→ ϕ) ⊴ (N |= A ↦→ ϕ), hence
(MA |= ϕ) ⊴ (NA |= ϕ), implying that MA ⊑+ NA. The converse is equally straight-
forward, and the proof for ≡ and ∀β.C goes similarly .

7.2.2 Applicative bisimilarity for polymorphic types

Following step (III) from Section 7.1, we extend the notion of applicative bisimilarity
by adding relevant clauses to the de�nition of applicative Q-simulation for the types
created by by the new type constructors. Since these should re�ect the behaviour of
the terms, these are inspired by the simulation rule for function types.

De�nition 7.2.2. (Addition to De�nition 4.2.1) A well-typed relation R is an applica-

tive Q-simulation if moreover:

8. M R∀α.CN =⇒ ∀A, MARC[A/α]NA

8'. M R∀β.CN =⇒ ∀D, MDRC[D/β]ND

With this extended de�nition, we can de�ne the notion of applicative Q-similarity
and Q-bisimilarity. We want to establish the Generalised Coincidence Theorem, Theo-
rem 6.4.8, establishing that the behavioural equivalence is equal to Q-bisimilarity.

The proofs in this section will only be carried out for ∀α.C types, since the proofs
for ∀β.C types are practically identical.

Theorem 7.2.3. (Theorem 6.4.8 in the presence of polymorphic types) If all modalities

are leaf-monotone then the positive behavioural preorder ⊑+ is applicative Q-similarity

and the general behavioural preorder ≡ is applicative Q-bisimilarity.

166 CHAPTER 7. POLYMORPHIC AND RECURSIVE TYPES

Proof. Part 1: By Lemma 7.2.1, we can extend the proof of Lemma 6.4.4 to prove that
the positive behavioural preorder is an applicative Q-simulation.

Part 2: We add one case to the proof of Lemma 6.4.6, that any applicative Q-
simulation R preserves the new formula A ↦→ ϕ given that it preserves ϕ. Assume
M R∀α.CN , then by the simulation rule it holds that MARC[A/α]NA. Hence since R
preserves ϕ, it holds that (M |= A ↦→ ϕ) = (MA |= ϕ) ⊴ (NA |= ϕ) = (M |= A ↦→ ϕ).

We can conclude that ⊑+ is the largest Q-simulation, and by adapting the proofs
slightly (c.f. Theorem 6.4.8 and Lemma 6.4.7), we can also conclude that ≡ is the
largest symmetric Q-simulation.

7.2.3 The Compatibility Theorem for polymorphic types

In order to prove compatibility of the open extension of the behavioural equivalence
for the extended language, we �rst need to establish what it means to be compatible.
We have four more compatible re�nement rules, for each of the term introduction rules,
extending Figure 3.2.

Γ ⊢ M RN : C

Γ ⊢ Λα.M ˆ︁RΛα.N : ∀α.C
P1

Γ ⊢ M RN : ∀α.C
Γ ⊢ MA

ˆ︁RNA : C[A/α]
P2

Γ ⊢ M RN : C

Γ ⊢ Λβ.M ˆ︁RΛβ.N : ∀β.C
P3

Γ ⊢ M RN : ∀β.C
Γ ⊢ MD

ˆ︁RND : C[D/β]
P4

Remember that a well-typed relation R is compatible if ˆ︁R ⊆ R. We write γ... and E...
for a tuple of type variables and types respectively. We change the de�nition of open
extension, given in De�nition 3.3.7, by adding substitution of types, where for γ... ⊢... E...:

x : Γ ⊢... P... R◦ R... : E... ⇔ ∀F..., ∀V : Γ[F.../γ...], ε ⊢... P...[F.../γ..., V /x] R R...[F.../γ..., V /x] : E...[F.../γ...].

All that remains is to adapt the Howe's method proof, following step (IV) from
Section 7.1. Since we added type variables, the notion of substitutivity from Lemma 4.4.3
needs to be extended to include substitution of types, as in [75]. So we start with an
auxiliary result, that the Howe closure is subsitutive in this extended sense. This has a
similar proof as Lemma 4.4.3. Recall that the Howe closure is de�ned with rule (H) in
De�nition 4.4.1.

Lemma 7.2.4 (Type Substitutivity). Suppose ∆, γ... ⊢... E... and Γ ⊢... P...R•R... : E.... then for

all ∆ ⊢... F..., Γ[F.../γ...] ⊢... P...[F.../γ...] R• R...[F.../γ...] : E...[F.../γ...].

Proof. This requires an induction on the shape (or typing derivation) of P... (which may
be a value or a computation type). If ∆, γ... ⊢... E..., ∆ ⊢... F... and Γ ⊢... P...R•R... : E... then
by H it holds that Γ ⊢... P... ˆ︂R•Q... and Γ ⊢... Q...R◦R... for some Q.... So we know that
Γ ⊢... Q...[F.../γ...]R◦R...[F.../x], by the extended de�nition of open extension. We need to prove
that Γ ⊢... P...[F.../γ...] ˆ︂R•Q...[F.../γ...]). In each of the cases of P..., Γ ⊢... P... ˆ︂R•Q... is derived from rule
Cn or Pn for some number n. This rule has as its premise some sequence of relations
P...iR•Q...i. By induction hypothesis it holds that P...i[F.../γ...]R•Q...i[F.../γ...], this is also trivially

7.2. UNIVERSAL POLYMORPHIC TYPES 167

true in the base cases n ∈ {1, 2} since then the sequence is empty. Using Cn or Pn we
can then derive that Γ ⊢... P...[F.../γ...]ˆ︂R•Q...[F.../γ...]. One can verify that this argument works
for each of the cases of Cn. So Γ ⊢... P...[F.../γ...] ˆ︂R•Q...[F.../γ...] and Γ ⊢... Q...[F.../γ...]R◦R...[F.../γ...],
hence Γ ⊢... P...[F.../γ...]R•R...[F.../γ...].

We assume that Q is a decomposable set of leaf-monotone and Scott-tree continuous
modalities. Let ⊆ be some applicative Q-simulation.

Lemma 7.2.5. The Howe closure ⊆• satis�es rule 8 and 8' from De�nition 7.2.2.

Proof. Assume M ⊆•
∀α.CN for two closed terms. Take some value type A, then by

compatibility of ⊆• (Lemma 4.4.2) we get MA⊆•
C[A/α]NA.

Since the de�nition of a stack has been extended, so has the de�nition of a frame in
De�nition 4.4.10. Extending De�nition 4.4.13; the frame Z ◦ −B dominates S ◦ −A if
A = B, and Z dominates S. It is not di�cult to check that Lemma 4.4.12, 4.4.11, 4.4.15,
and 4.4.14 still hold, since the proofs are similar to the proofs for the Π-types. We
manually check the least trivial lemma.

Lemma 7.2.6 (Lemma 4.4.15 in the presence of polymorphic types). If S{M ′}⊆•N

then there is a frame Z and a term N ′ s.t.; Z dominates S, M ′ ˆ︂⊆•N ′ and Z{N ′}⊆N .

Proof. We add a case to the proof of Lemma 4.4.15 by induction on S. Assume the
statement holds for S′.

3. If S = −A ◦ S′, then S{M ′} = S′{M ′}A. Now, there is a term K such that
S{M ′} ˆ︂⊆•K⊆N . The statement S′{M ′}A ˆ︂⊆•K could only have been derived
from rule P2, so we know there is a K ′ such that K = K ′

A and S′{M ′}⊆•K ′.

We use the induction hypothesis on S′{M ′}⊆•K ′ to �nd a term N ′ and frame
Z ′ dominating S′ such that M ′ ˆ︂⊆•N ′ and Z ′{N ′}⊆K ′. Let Z := −A ◦ Z ′, then
Z dominates S. From Z ′{N ′}⊆K ′ and the new simulation rule we have Z{N ′} =

Z ′{N ′}A⊆K ′
A = K. With K⊆N we can conclude that Z{N ′}⊆N and from

earlier M ′ ˆ︂⊆•N ′. So Z and N ′ have the desired properties.

Lastly, we need to adapt the Key Lemma, Lemma 4.4.17, by adding a new case to
Lemma 4.4.18. There is one more type of informative computation term, Λα.M . We
add the case here, as if we are in the proof of the Key Lemma.

Lemma 7.2.7. (Lemma 4.4.17 (Key Lemma) in the presence of polymorphic types)

Given two closed terms M,N : FA such that M ⊆•N , then ∀n, |M |nO(⊆•) |N |.

Proof. It is su�cient to add the case of M = Λα. P to the proof of Lemma 4.4.18.

168 CHAPTER 7. POLYMORPHIC AND RECURSIVE TYPES

14. IfM = Λα. P , then forM to �t in S, S must be of the form S′◦−A for some value
typeA. Since Z dominates S, Z = Z ′◦−A where Z ′ dominates S′. The statement
M ˆ︂⊆•N could only have been derived via the new compatibility rule P1, so N =

Λα. P ′ for some P ′ such that P ⊆• P ′, hence by Lemma 7.2.4, P [A/α]⊆• P ′[A/α].
Using Lemma 4.4.16 and (IH), we can do the following derivation:

|S{M}|n+1 = |S′{Λα. PA}|n+1 = |S′{P [A/α]}|n−1 O(⊆•) |Z ′{P ′[A/α]}| =

|Z ′{Λα. P ′
A}| = |Z{N}|.

We can conclude that the extended logics for the extended language gives us be-
havioural preorders with compatible open extensions. As such, we have veri�ed the
Generalised Compatibility Theorem, Theorem 6.3.15, for the extended language:

Theorem 7.2.8. If Q is a decomposable set of leaf-monotone and Scott-tree continu-

ous modalities, then the behavioural preorders for the language extended with universal

polymorphic types, are compatible.

7.2.4 Constructions using polymorphic types

There are some interesting examples of polymorphic terms besides the polymorphic
return and force functions discussed before. Most notably, we can consider the e�ect
operators as polymorphic terms. Before, when we said or(−,−) : α × α → α, we
meant that the e�ect operator or(−,−) exists for any instantiation of the meta-variable
α. Now, we can consider α as a type variable instead, considering the e�ect operator
polymorphic.

So with the introduction of polymorphic types, we can construct polymorphic e�ect
operators, in the sense of [57, 58]. Take for instance the following term:

OR := Λβ. (λp : Uβ ×Uβ. pm p as (x, y).or(force(x), force(y))) : ∀β.Uβ ×Uβ → β

The call-by-push-value setting necessitates the use of the thunk type to construct such a
polymorphic e�ect operator. This term takes as arguments a computation type C, and
then a pair of thunked computation terms of type C, and combines them in the nonde-
terministic choice program of type C which chooses between the two given computation
terms.

Similarly, we can de�ne in the case of global store, the polymorphic e�ect operator

LU := Λβ. (λx : U (N → β). lookupl(y ↦→ force(x) y)) : ∀β. (U (N → β)) → β

for the polymorphic version of the lookup operator.
Let us look at an example of a Boolean formula we can construct in the logic for

polymorphic types. We call a type A rich if it has two terms V,W : A such that
V ̸≡ W . For a nondeterministic language, we de�ne the following formula of type
∀α. α→ α→ α→ Fα, as a conjunction over rich types:⋀︂
A, rich

A ↦→
⋁︂

{(V ↦→(W ↦→(L ↦→♢(ϕ)∧♢(ψ)))) | V,W,L : A, ϕ, ψ∈Form(A), ϕ∧ψ ≡ ⊥}

7.3. RECURSIVE TYPES 169

This formula checks whether there are three arguments such that two disjoint formulas
may be satis�ed according to the may deterministic ♢ modality. This is equivalent to
saying that the terms carries information from at least two of its arguments, meaning
at least two di�erent arguments may possibly be returned. It is satis�ed for example
by terms Λα. λx. λy. λz. or(return(x), return(y)), Λα. λx. λy. λz. or(return(y), return(z)),
and Λα. λx. λy. λz. or(or(return(x),Ω), or(return(y), return(z))), but not by the term
Λα. λx. λy. λz. return(y).

7.3 Recursive types

In order to greatly increase the expressibility of the language, we add recursive types.
This is a very powerful programming mechanism, allowing us to for example model
the untyped lambda calculus, recreate the �xpoint operator, and create recursive data
types like lists. For full generality, we consider adding recursive types on top of universal
polymorphic types, but we could of course alternatively add the types independently.

We add both a value recursive type and a computation recursive type constructor.

∆, α ⊢ A

∆ ⊢ µα.A
∆, β ⊢ C

∆ ⊢ µβ.C

Here, α is bound in µα.A, and β is bound in µβ.C. We de�ne both term constructors
and term deconstructors for the new type, together with their typing judgements added
to Figure 2.1:

Γ ⊢ V : A[µα.A/α]

Γ ⊢ fold(V) : µα.A

Γ ⊢ V : µα.A Γ, x : A[µα.A/α] ⊢ M : C

Γ ⊢ pmV as fold(x).M : C

Γ ⊢ M : C[µβ.C/β]

Γ ⊢ fold(M) : µβ.C

Γ ⊢ M : µβ.C

Γ ⊢ unfold(M) : C[µβ.C/β]

We expand the operational semantics. The new computation term created for the
value recursive type µα.A can be directly reduced with the following rule, added to
De�nition 2.1.4:

8. pm (fold(V)) as fold(x).M ⇝ M [V/x] .

In order to evaluate the computation term unfold(M) created for the computation
recursive type µβ.C, we need to �rst evaluate M . Hence, we need to add the unfold
operation to the stacks:

S := · · · | S ◦ unfold(−) where (S ◦ unfold(−)){M} := S{unfold(M)} .

To �nish of the operational semantics, we add the two appropriate stack reduction rules
from De�nition 2.1.7:

10. (S, unfold(M))↣ (S ◦ unfold(−),M).

11. (S ◦ unfold(−), fold(M))↣ (S,M).

This �nishes the extension of the language and its operational semantics.

170 CHAPTER 7. POLYMORPHIC AND RECURSIVE TYPES

7.3.1 Logic for recursive types

We now need to establish what is considered a behavioural property of terms of these
new types, to appropriately extend the behavioural logic. Both types have terms intro-
duced by a fold(−) operator, hence we de�ne a formula by lifting a property along the
term introduction rules of the fold(−) operator, adding two new rules to Figure 6.1:

ϕ ∈ Form(A[µα.A/α])

f(ϕ) ∈ Form(µα.A)

ϕ ∈ Form(C[µβ.C/β])

f(ϕ) ∈ Form(µβ.C)

We de�ne the satisfaction of the new formulas as follows, extending the de�nition
given at the end of Subsection 6.1.1.

(fold(V) |= f(ϕ)) := (V |= ϕ) (M |= f(ϕ)) := (unfold(M) |= ϕ) .

Note that the di�erence between the two de�nitions is similar to the di�erence between
basic formulas of pair types and basic formulas of Π-types.

With the extended quantitative logic, we can de�ne the behavioural equivalence ≡
and positive behavioural preorder ⊑+ for the extended language, as de�ned in De�ni-
tion 6.3.1 and the paragraph below it. We can include the following two classi�cations
(c.f. Lemma 3.4.3) of those relations:

Lemma 7.3.1. For R either ⊑+ or ≡, it holds that:

9. fold(V)Rµα.A fold(V) ⇐⇒ V RA[µα.A/α]W .

9'. M Rµβ.C N ⇐⇒ unfold(M) RC[µβ.C/β] unfold(N).

Proof. fold(V) ⊑+
µα.A fold(W) holds if and only if ∀ϕ ∈ Form(A[µα.A]),

(fold(V) |= f(ϕ)) ⊴ (fold(W) |= f(ϕ)), meaning (V |= ϕ) ⊴ (W |= ϕ). This precisely
holds when V ⊑+

A[µα.A] W .

M ⊑+
µβ.C N holds if and only if ∀ϕ ∈ Form(C[µβ.C/β]), (unfold(M) |= ϕ) =

(M |= f(ϕ)) ⊴ (N |= f(ϕ)) = (unfold(N) |= ϕ). This is precisely when
unfold(M) ⊑+

C[µβ.C/β] unfold(N).

7.3.2 Applicative bisimilarity for recursive types

We extend the de�nition of applicative Q-simulation by adding simulation rules for the
new types. This simultaneously de�nes applicative Q-similarity and Q-bisimilarity.

De�nition 7.3.2. (Addition to De�nition 7.2.2) A well-typed relation R is an applica-

tive Q-simulation if moreover:

9. fold(V)Rµα.A fold(W) =⇒ V RA[µα.A/α]W .

9'. MRµβ.CN =⇒ (unfold(M)RC[µβ.C/β] unfold(N)).

Just as we did in Subsection 7.2.2, we adapt the proof of the Generalised Coin-
cidence Theorem appropriately to be suitable for this extended notion of applicative
Q-bisimilarity.

7.3. RECURSIVE TYPES 171

Theorem 7.3.3 (Theorem 6.4.8 with universal polymorphic and recursive types). If all
modalities are leaf-monotone, then the positive behavioural preorder ⊑+ is applicative

Q-similarity and the general behavioural preorder ≡ is applicative Q-bisimilarity.

Proof. We add two cases to Part 1 and Part 2 of the proof of Theorem 7.2.3.
Part 1: With Lemma 7.3.1 we know that ⊑+ satis�es the new simulation rules 9

and 9', so we can add the two cases to prove that the positive behavioural preorder is
an applicative Q-simulation.

Part 2, we add two more cases to the proof of Lemma 6.4.6, showing that any
applicative Q-simulation R preserves the new formulas f(ϕ) and f(ϕ) given that it
preserves ϕ and ϕ.

Assume fold(V)Rµα.A fold(W), then by the simulation rule it holds that
V RA[µα.A/α]W . Since R preserves ϕ, we derive that: (fold(V) |= f(ϕ)) = (V |= ϕ) ⊴
(W |= ϕ) = (fold(W) |= f(ϕ)). Hence R preserves f(ϕ).

Assume M Rµβ.CN , then by the simulation rule it holds that
unfold(M)RA[µβ.C/β] unfold(N). Since R preserves ϕ, we derive that: (M |= f(ϕ)) =

(unfold(M) |= ϕ) ⊴ (unfold(N) |= ϕ) = (N |= f(ϕ)). Hence R preserves f(ϕ).
We can conclude that ⊑+ is the largest Q-simulation, and by adapting the proofs

slightly (c.f. Theorem 6.4.8 and Lemma 6.4.7) that ≡ is the largest symmetric Q-
simulation.

7.3.3 The Compatibility Theorem for recursive types

We will prove that open extensions of the behavioural preorders induced by the logic
are compatible. Let us �rst consider how the de�nition of compatible re�nement can
be broadened to appropriately adapt the de�nition of compatibility for this extended
language. We extend Figure 3.2 with the following four rules:

Γ ⊢ V RW : A[µα.A/α]

Γ ⊢ fold(V) ˆ︁R fold(W) : µα.A
R1

Γ ⊢ V RW : µα.A Γ, x : A[µα.A/α] ⊢ M RN : C

Γ ⊢ (pmV as fold(x).M) ˆ︁R (pmW as fold(x). N) : C
R2

Γ ⊢ M RN : A[µβ.C/β]

Γ ⊢ fold(M) ˆ︁R fold(N) : µβ.C
R3

Γ ⊢ M RN : µβ.C

Γ ⊢ unfold(M) ˆ︁R unfold(N) : C[µβ.C/β]
R4

Now we extend the proofs necessary for establishing compatibility, following step
(IV). Note the usual lemmas for the Howe closure hold, including type substitutivity
by Lemma 7.2.4 from the previous section. Assume Q is a decomposable set of leaf-
monotone and Scott-tree continuous modalities, and let ⊆ be a Q-simulation.

Lemma 7.3.4. The Howe closure of a simulation ⊆ satis�es the rules 9 and 9' from

De�nition 7.3.2.

Proof. First the simulation rule for µα.A. If fold(V)⊆• fold(W) then
fold(V) ˆ︂⊆• fold(L)⊆◦ fold(W) for some L. By the simulation property for ⊆, and the

172 CHAPTER 7. POLYMORPHIC AND RECURSIVE TYPES

fact that L and W are closed, we know that L⊆◦W . Moreover, fold(V) ˆ︂⊆• fold(L)

could have only been derived from the new compatible closure rule R1, hence V ⊆• L.
We can conclude that V ⊆•W by Lemma 4.4.4.

The simulation rule for µβ.C is muh easier to prove, since it follows from rule R4

and the fact that ⊆• is compatible.

There is one more constructor for stacks, so one more constructor for frames as well.
Extending De�nition 4.4.13, the frame Z ◦ unfold(−) dominates S ◦ unfold(−) if and
only if Z dominates S. The usual lemmas about frames hold. Again, we prove the least
trivial one:

Lemma 7.3.5. (Lemma 4.4.15 with universal polymorphic and recursive computation

types) If S{M ′}⊆•N then there is a frame Z and a term N ′ such that; Z dominates

S, M ′ ˆ︂⊆•N ′ and Z{N ′}⊆N .

Proof. We add a case to the proof of Lemma 7.2.6 by induction on S. Assume the
statement holds for S′.

4. S = unfold(−) ◦ S′, then S{M ′} = unfold(S′{M ′}). Now, there is a term K such
that S{M ′} ˆ︂⊆•K⊆N . The statement unfold(S′{M ′}) ˆ︂⊆•K could only have been
derived from rule R4, so we know there is a K ′ such that K = unfold(K ′) and
S′{M ′}⊆•K ′.

We use the induction hypothesis on S′{M ′}⊆•K ′ to �nd a term N ′ and frame
Z ′ dominating S′ such that M ′ ˆ︂⊆•N ′ and Z ′{N ′}⊆K ′. Let Z := unfold(−) ◦ Z ′,
then Z dominates S. From Z ′{N ′}⊆K ′ and a simulation rule we have Z{N ′} =

unfold(Z ′{N ′})⊆unfold(K ′) = K. With K⊆N we can conclude that Z{N ′}⊆N
and from earlier M ′ ˆ︂⊆•N ′. So Z and N ′ have the desired properties.

We �nish the adaptation of the proof by Howe's method by adding two new cases
of computation terms to the Key Lemma (Lemma 4.4.17).

Lemma 7.3.6 (Lemma 4.4.17 with universal polymorphic and recursive types). Given
two closed terms M,N : FA such that M ⊆•N , then ∀n, |M |nO(⊆•) |N |.

Proof. It is su�cient to add the cases of M = (pmV as fold(x). P) and M = unfold(N)

to Lemma 4.4.18. Note that unfold(P) is not an informative term, so need not be added
(similar to how P V is not a case in the original lemma).

15. IfM = (pmV as fold(x). P), then it holds fromR2 that N = (pmW as fold(x). Q)

for someW and Q such that V ⊆•W and P ⊆•Q. Now we have that V = fold(V ′)

and W = fold(W ′) for some V ′ and W ′ since the terms are closed, from which
by the new simulation rule we get V ′⊆•W ′. From P ⊆•Q and Lemma 4.4.3 it
holds that P [V ′/x]⊆•Q[W ′/x]. We conclude with (IH) and Lemma 4.4.16 that:

|S{M}|n+1 = |S{pm fold(V ′) as fold(x). P}|n+1 =

|S{P [V ′/x]}|nQ(⊆•) |S′{Q[W ′/x]}| = |S′{N}|.

7.3. RECURSIVE TYPES 173

16. If M = fold(P), then M ˆ︂⊆•N is from R3, so N = fold(Q) for some Q such
that P ⊆•Q. For M to �t in S (and S{M} : FA), S must be of the form
S′ ◦ unfold(−). Since Z dominates S, Z = Z ′ ◦ unfold(−) such that Z ′ dominates
S′. Hence S{P}⊆• Z{Q} by Lemma 4.4.14. By (IH) and Lemma 4.4.16, we can
derive that:

|S{M}|n+1 = |S′ ◦ unfold(−){fold(P)}|n+1 = |S′{P}|n−1Q(⊆•)|Z ′{Q}| = |N |.

We can conclude that the Generalised Compatibility Theorem, Theorem 6.3.15,
holds for the language with universal polymorphic types and recursive types:

Theorem 7.3.7. If Q is a decomposable set of leaf-monotone and Scott-tree continu-

ous modalities, then the behavioural preorders for the language extended with universal

polymorphic types and recursive types, are compatible.

7.3.4 Constructions using recursive types

Using recursive types, we can de�ne many interesting types and terms. For instance, it
is possible to rede�ne the �xpoint operator using recursive types. In this subsection, we
look at another construction. For simplicity, we write A +A′ for the binary sumtype
Σi∈I Bi where I = {0, 1}, B0 = A, and B1 = A′.

The natural numbers type N can be de�ned as the recursive type µα.1 + α and
hence need not be taken as primitive. The usual constructors and deconstructors of the
natural numbers type can be rede�ned to:

Z := fold((0, ∗)), S(V) := fold((1, V)),

case V of {M,S(z) ⇒ N} := pmV as fold(x). (pm x as {(0, y).M, (1, z).N}) .

The basic formulas for the natural numbers can also be retrieved, with {0} := f((0,⊤))

and {n+ 1} := f((1, {n})).
For any value type A, we can create a type of lists list(A) of terms of that type,

as list(A) := µα.1+ (A× α). Basic formulas of list(A), as given by the formulas for
recursive types, are of the following three forms:

� A formula f((0,⊤)) which checks whether a list is empty. Here V |= f((0,⊤))

yields T if V gives an empty list, and F otherwise.

� A formula f((1, π0(ϕ))) where ϕ ∈ Form(A), checking the head of the list.
V |= f((1, π0(ϕ))) yields F if V gives an empty list, and W |= ϕ if V is a non-
empty list whose head is given by W .

� A formula f((1, π1(ϕ))) where ϕ ∈ Form(list(A)), checking the tail of the list.
V |= f((1, π1(ϕ))) yields F if V gives an empty list, and W |= ϕ if V is a
non-empty list whose tail is given by W .

The resulting behavioural equivalence will state that two lists are equivalent if they are
of the same length, and elements at matching locations in the list are equivalent.

174 CHAPTER 7. POLYMORPHIC AND RECURSIVE TYPES

7.4 Thoughts on language extensions

With the addition of universal polymorphic types or recursive types, we have shifted
away from a simply-typed system. One consequence of this is that we are unable to
perform proofs regarding the pure logics from Section 5.4 and Subsection 6.3.4. In
particular, we used inductions on types in Propositions 5.4.2 and 6.3.24 to prove that
the pure logic induces the same equivalence as the general logic. However, because
formulas of universal polymorphic types and recursive types may contain sub-formulas
of `higher' types, such inductions on types are not well-founded. For instance, we would
need to �nd a characteristic function χV for some value of a polymorphic type ∀α.A.
But such a formula may contain formulas for a higher type like A[∀α.A/α], breaking
the induction. Hence, the results on pure logics do not directly apply to the language
extended with universal polymorphic types and/or recursive types.

It may however be possible to prove Propositions 5.4.2 and 6.3.24 in another way.
In [10], it was proven that properties of universal polymorphic types could be tested at
a particular instantiation of the type. If such a thing would be true for the language
studied in this thesis, behavioural equivalence could be determined at such a type
instantiation. This may enable us to �x the necessary induction on types. It is however
unclear whether the results from [10] could be extended to apply to the call-by-push-
value language with algebraic e�ects used in this thesis.

Another issue with the current framework is the inability to incorporate existential
types, e.g., as done in [74]. The behavioural equivalence formulated in this thesis
coincides with a notion of applicative bisimilarity. However, existential types seem
to be incompatible with applicative bisimilarity techniques. This problem is discussed
in [99], where, to solve this issue, they consider a notion of bisimulation on program
tuples in order to properly investigate languages with existential types.

In some languages, it is possible to model existential types as universal polymorphic
types. E.g [57] de�nes an existential type as ∃X.B as ∀Y.∀X.B → Y → Y . However,
there does not seem to be an appropriate translation of this type into the particular
call-by-push-value language used in this thesis. None of the choices for translating this
type seem to implement the right interpretation for existential types.

8

Conclusions

In this �nal chapter of the dissertation, we will discuss the topics of this thesis in relation
to other work, and talk about potential topics for future research. This will be done in
the form of �ve big questions.

What happened? We have de�ned a relation of equality between call-by-push-value
programs with e�ects by specifying behavioural properties. The resulting behavioural
equivalence was proven to be compatible for certain algebraic e�ects, including error,
nondeterministic choice, probabilistic choice, global store, input/output, timer and cer-
tain combinations thereof.

The primary tool used for interpreting the behaviour of e�ectful programs is the
notion of modality, which was adapted from the notion of observation in [35]. There,
observations were de�ned on trees of type N, whereas modalities are de�ned on unit-
type e�ect trees, or quantity-valued trees in the case of the quantitative logic. Modalities
in this dissertation are used to lift properties on values to properties on computations,
analogous to predicate lifting in coalgebra [34]. The paper [35] features properties of
Scott-openness and decomposability with a similar function to the notions in this thesis
with the same name, though decomposability for modalities is more subtle than the
corresponding notion for observations in [35].

The behavioural equivalence has been proven to be compatible by equating it to
a notion of applicative bisimilarity [2], which interprets e�ects using relators (relation
lifting devices). Such applicative bisimilarities for e�ectful programs were de�ned in [14]
for an untyped lambda calculus with e�ects, where furthermore Howe's method [30, 31]
was used to prove compatibility of this notion of bisimilarity. This proof was adapted in
this thesis to work for typed call-by-push-value language with algebraic e�ects, general
recursion, universal polymorphic types and recursive types.

Is it reasonable? In the literature, logics for e�ects have primarily been considered
for the purpose of reasoning about programs with e�ects. Some such logics are sound
with respect to notions of program equivalence, e.g., bisimilarity, mutual similarity and
contextual equivalence. In general, programming logics are not used to determine a
notion of compatible program equivalence, as is the purpose of the logic in this disser-

175

176 CHAPTER 8. CONCLUSIONS

tation. However, it is possible for logics sound with respect to behavioural equivalence
to be expressed within our logic. We review some of the alternative logic descriptions.

Pitts' evaluation logic was an early logic for general computational e�ects [73]. Eval-
uation logic has built-in □ and ♢ modalities, which are used to interpret any e�ect
through the lens of demonic/must and angelic/may nondeterminism. This interpreta-
tion can be awkward for some examples of e�ects, for instance for probability. It would
therefore be natural to consider replacing the □ and ♢ modalities in the evaluation logic
with the e�ect-speci�c modalities considered in this dissertation, de�ned in Section 3.2.

A more general description of e�ectful properties is given in a logic for algebraic
e�ects, from Plotkin and Pretnar [85]. There, equations are taken as the primitive
interpretation of e�ectful behaviour, and are used to axiomatise an equational theory
over the e�ect operators. This is in line with the algebraic interpretation of e�ects
advocated by Plotkin and Power [83]. The chosen equational axioms from [85] are
typically sound with respect to the program equivalence, and can thus be used to
soundly reason about program equivalence. In this dissertation, modalities are chosen
as primitives, and the equations are induced as a consequence, as seen in Section 3.5. We
can see modalities as some kind of dual to equations, because they are better suited for
establishing non-equivalence between two terms (by �nding a formula that distinguishes
the two). Potentially, the two theories could be used to complement each other.

The logic of [85] does use modalities, each determined by an individual e�ect oper-
ator from Σ. In the case of the input-output e�ect, such operator speci�c modalities
could be expressed within the logic of this dissertation. Perhaps more usefully, the logic
from [85] could be altered by replacing the `local' operator modalities with the `global'
behavioural modalities used in this dissertation. This may provide an alternative more
usable framework for speci�cation and veri�cation of programs with algebraic e�ects.
For instance, as we have seen in Section 5.6, the notion of decomposability provides us
with proof rules which are potentially helpful in veri�cation. This leads us to the next
question.

Is it practical? The main function of the logic in this dissertation is to formulate
and de�ne a notion of program equivalence. Since the base logics are in�nitary, they
cannot directly be used for practical applications such as speci�cation and veri�cation.
However, as we have seen in Chapter 5 and Section 6.5, the logic necessary for specifying
the behavioural equivalence can in many cases be reduced to a �nitary logic. It would
be interesting to see if this might be useful for designing algorithmic approaches to
establishing non-equivalence between programs.

The low-level in�nitary logic has merit too, as it serves as a base logic into which
more practical �nitary logics can be translated. Such a translation will prove that the
logic is sound with respect to applicative bisimilarity from Chapter 4. For this pur-
pose, the closure of the logics under in�nitary propositional logic is crucial, as it allows
for the standard translations of quanti�ers and least and greatest �xed points into the
logic. As another example, the translation of Hoare logic into the logic of this disserta-

177

tion, as illustrated in Subsection 5.5.1, makes crucial use of in�nitary disjunctions and
conjunctions.

As an alternative to the in�nitary propositional logic, one might explore logics with
�nitary syntax, including for example �xpoint formulas and quanti�ers, for expressing
interesting properties in the logic (e.g., with modal µ-calculus [39]). The compositional
proof rules established in Section 5.6 could potentially be expressed in such �nitary
logics, providing a framework for formal proofs that programs satisfy certain properties.
This is one possible direction for developing practical applications from this thesis.

The previous paragraph discusses using the logic to prove properties of programs. It
could also be interesting to verify equivalence between programs. In this respect, as men-
tioned before, the main potential of this logic seems to be establishing non-equivalence:
two terms P... and R... are non-equivalent if there is a formula of their type distinguishing
them. Bisimilarity, on the other hand, is a useful tool for proving equivalence, two terms
are equivalent if there is a simulation relating the two. This proof technique becomes
even more practical if `up-to' methods [13, 90, 92] are available. Hence, it may be useful
to consider the logic from this dissertation as a useful complement to bisimilarity, since
the resulting behavioural equivalence coincides with a notion of applicative bisimilarity.

We may also relate the logic with other useful methods for establishing equivalence,
such as the method of logical relations [9, 29, 35, 37, 75, 76] often used for establishing
contextual equivalence. We have seen in Subsection 5.2.4 that for some examples of
e�ects the positive behavioural preorder coincides with the contextual preorder. These
examples include error, input/output, and global store with �nite locations. A notable
exception is nondeterminism, for which it has been proven, e.g., in [40, 41], that the
bisimilarity is distinct from contextual equivalence. For some probabilistic languages,
bisimilarity does coincide with contextual equivalence, as seen in [12]. As such, a similar
result may hold in the context of this thesis.

Is it relevant? We compare the approach taken in this dissertation with some similar
approaches to de�ning behavioural equivalence for e�ectful languages. There are for
instance similarities between the Boolean logic in this thesis and the logic developed in
Abramsky's domain theory in logical form [3]. There, a �nite endogenous logic is used
to characterise denotational equivalence. In contrast, in this dissertation we construct a
logic on the operational semantics (with e�ect trees) to de�ne behavioural equivalence.

We look at a plethora of relatively recent developments related to this thesis.
For instance, another approach to logics for e�ects has been proposed by Goncharov,
Mossakowski and Schröder [23, 65], who de�ne the logic semantically within a pure
fragment of the programming language itself. In the case of global store, this approach
derives Hoare logic. However, the approach taken appears not to be applicable to as
many examples as the approach used in this dissertation.

The quantitative logic also has similarities to other approaches. The denotations
JqK : TA → A of quantitative modalities are, in the case of the running examples,
Eilenberg-Moore algebras (see Subsection 6.3.3). As such, our examples of quantitative
modalities potentially �t into the framework of Hasuo [26]. It should be noted that

178 CHAPTER 8. CONCLUSIONS

modalities need not be EM-algebras for the resulting equivalence to be compatible.
For instance, the Scott open Boolean modalities denote functions from TB → B (see
Subsection 6.5.1), but most of the example modalities in the Boolean logic do not denote
EM-algebras. However, there might be a uniform way to combine all modalities from
a decomposable set of Scott open modalities into a single EM-algebra, by choosing an
appropriate truth space. This is in a way what happens when going from the Boolean
modalities to the quantitative modality in the individual cases of probabilistic choice
and global store.

Another approach to reasoning about e�ects is done in the F ∗ project [100], where an
e�ectful programming language is described within a theorem-prover with a dependent
type structure. At this stage, that framework supports many of the e�ect examples
given in this thesis, described by Dijkstra monads [5, 52, 100, 101]. The formulation
is based on identifying the right notion of precondition for a given postcondition, a
concept which is intuitively clear in the case of global store, but becomes more subtle
for other e�ect examples. In the case of global store, the precondition-postcondition
style arises naturally in the framework of this thesis, as the (s↣ s′) modality and the
quantitative G modality both check correctness of beginning states for getting a certain
result. For other examples of e�ects, the connection becomes less clear. Because of the
potential practical properties of the logic of this thesis, further comparisons to Dijkstra
monads could provide good reasoning tools for the latter. Moreover, for some e�ects
the formulation using (quantitative) modalities may be considered more natural, for
instance in the case of input/output where e�ects may be observed in the middle of
execution (see a formulation of input/output with Dijkstra monads in [51, 72]).

In short, there are many current approaches to reasoning about and establishing
equivalence for programs with e�ects. Each has its own merits, focussing at a speci�c
level of generality. So it is that we arrive at the �nal question.

Is it general? The notion of program equivalence in this thesis has been de�ned for a
call-by-push-value language with general recursion, �nite sums and products, universal
polymorphic types, recursive types, and a wide range of algebraic e�ects. As such,
equivalences could be extracted for any language which can be embedded within it, for
instance typed call-by-name, call-by-value and lazy PCF [42, 43], and untyped call-by-
value lambda-calculus with algebraic e�ects [14]. Similarly, as discussed before, other
logics and reasoning principles could be embedded within the in�nitary propositional
logic. Let us discuss the ways the language and logic can be made even more general.

In this thesis, we consider program properties (or observations) as the primary way
of describing program behaviour. According to this philosophy, the generalisation to
quantitative properties given in Chapter 6 is natural. Alternatively, one could consider
relations (or comparisons) as primary, and instead generalise to quantitative relations.
One approach in this direction is using metrics, along the lines of [6, 17, 53]. Relating the
quantitative logic of this thesis, or a variation thereof, to metrics (e.g., like the ones in
[21]) is a topic for future research. One technical di�culty in using quantitative relations
is that sometimes certain properties related to metrics (such as non-expansivity) are

179

needed, and sometimes this necessitates using restrictive calculi such as a�ne calculi.
It seems possible that there may be other approaches to quantitative relations that
avoid such problems.

The quantitative logic does not however naturally induce a metric on terms. This is
mainly because of the inclusion of threshold-formulas ϕ⊵a, which takes the quantitative
information from ϕ and collapses it to a binary value. These threshold-formulas are
necessary for relating the behavioural equivalence to applicative bisimilarity. Their
necessity can be seen as a natural consequence of the non-linearity of the language,
created in part by general recursion.

The quantitative logic is very expressive, allowing one to deal with some awkward
combinations of e�ects that are not amenable to a Boolean treatment. These com-
binations of e�ects are treated in a-case-by-case basis. A possible uniform theory for
combining e�ects and their quantitative modalities is currently under development. An-
other potential future direction is developing a system of subtyping, where each program
can be (dynamically) associated to a set of e�ects it might produce.

The algebraic operators used to model e�ects in this thesis are limited to arities
formed by products of α, N → α and N. The theory makes use of the fact that terms
of type N are equivalent if and only if they are syntactically the same. For terms
of more complex types, this is not necessarily the case, which makes the de�nition
of modalities over e�ect trees using operators with more general arities challenging.
However, more general arities are needed to include e�ects such as local store, higher-
order store, and jumps with dynamically created variables as in [20]. For some of these
e�ects, the appropriate notion of bisimilarity is environmental bisimilarity [38, 91]. The
complexity of this notion hints at the degree of complexity required for formulating a
program logic for such e�ects.

Last but not least, we could consider another way of programming with algebraic
e�ects using handlers [8, 86]. In general, handlers violate the standard equations as-
sociated with algebraic e�ects, and would hence break the behavioural equivalence.
However, there are di�erent options for implementing handlers to the current frame-
work. Firstly, one can extend the language with e�ect handlers. To this extend, one
might want to try and identify `safe' handlers, the ones that do not break the equiv-
alence. An investigation along these lines is done in [50], where safety of handlers is
studied with respect to equational theories. Secondly, one could use handlers to imple-
ment modalities into the language itself, e.g., various operators from concurrency can
be de�ned using handlers [1, 22]. Considering these two directions, adding handlers
may be a fruitful pursuit for the future.

Bibliography

[1] Martin Abadi and Gordon Plotkin. A model of cooperative threads. In Proceedings of

the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL '09, pages 29�40, 2009.
[2] Samson Abramsky. The lazy λ-calculus. Research Topics in Functional Programming,

pages 65�117, 1990.
[3] Samson Abramsky. Domain theory in logical form. Annals of Pure and Applied Logic,

51(1�2):1�77, 1991.
[4] Samson Abramsky, Kohei Honda, and Guy McCusker. A fully abstract game semantics

for general references. In Proceedings. Thirteenth Annual IEEE Symposium on Logic in

Computer Science, pages 334�344, 1998.
[5] Danel Ahman, Catalin Hritcu, Kenji Maillard, Guido Martínez, Gordon Plotkin,

Jonathan Protzenko, Aseem Rastogi, and Nikhil Swamy. Dijkstra monads for free. In 44th
ACM SIGPLAN Symposium on Principles of Programming Languages (POPL), pages
515�529, 2017.

[6] André Arnold and Maurice Nivat. Metric interpretations of in�nite trees and semantics
of non deterministic recursive programs. Theoretical Computer Science, 11(2):181 � 205,
1980.

[7] Henk P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. Studies in logic
and the foundations of mathematics 103. Amsterdam : North-Holland, 1984.

[8] Andrej Bauer and Matija Pretnar. Programming with algebraic e�ects and handlers.
Journal of Logical and Algebraic Methods in Programming, 84:108�123, 2015.

[9] Nick Benton, Martin Hofmann, and Vivek Nigam. Abstract e�ects and proof-relevant
logical relations. In The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, POPL '14, pages 619�632, 2014.
[10] Jean-Philippe Bernardy, Patrik Jansson, and Koen Claessen. Testing polymorphic proper-

ties. Lecture Notes in Computer Science, 6012, 2010. In: Gordon A.D. (eds) Programming
Languages and Systems. ESOP 2010.

[11] Stephen A. Cook. Soundness and completeness of an axiom system for program veri�ca-
tion. SIAM Journal of Computing, 1978.

[12] Raphaëlle Crubillé and Ugo Dal Lago. On probabilistic applicative bisimulation and
call-by-value λ-calculi. Lecture Notes in Computer Science, 8410, 2014.

[13] Ugo Dal Lago and Francesco Gavazzo. E�ectful normal form bisimulation. In Luís Caires,
editor, Programming Languages and Systems, pages 263�292, 2019.

[14] Ugo Dal Lago, Francesco Gavazzo, and Paul B. Levy. E�ectful applicative bisimilarity:
Monads, relators, and the Howe's method. Logic in Computer Science, pages 1�12, 2017.

181

182 BIBLIOGRAPHY

[15] Ugo Dal Lago, Davide Sangiorgi, and Michele Alberti. On coinductive equivalences for
higher-order probabilistic functional programs (long version). Conference Record of the

Annual ACM Symposium on Principles of Programming Languages, 49, 2013.
[16] Ugo Dal Lago, Davide Sangiorgi, and Michele Alberti. On coinductive equivalences for

higher-order probabilistic functional programs. ACM SIGPLAN Notices, 49(1):297�308,
2014.

[17] Martín Hötzel Escardó. A metric model of PCF, 1999. In: Workshop on Realizability
Semantics and Applications.

[18] Matthias Felleisen and Daniel P. Friedman. Control operators, the SECD-machine, and
the [1]-calculus. Formal Description of Programming Concepts, pages 193�217, 1986.

[19] Matthias Felleisen and Robert Hieb. The revised report on the syntactic theories of
sequential control and state. Theoretical Computer Science, 103:235�271, 1992.

[20] Marcelo Fiore and Sam Staton. Substitution, jumps, and algebraic e�ects. In Proceedings

of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and

the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
CSL-LICS '14, pages 41:1�41:10, 2014.

[21] Francesco Gavazzo. Quantitative behavioural reasoning for higher-order e�ectful pro-
grams: Applicative distances. In Proceedings of the 33rd Annual ACM/IEEE Symposium

on Logic in Computer Science, LICS 2018, pages 452�461, 2018.
[22] Rob van Glabbeek and Gordon Plotkin. On CSP and the Algebraic Theory of E�ects,

pages 333�369. Springer London, London, 2010.
[23] Sergey Goncharov and Lutz Schröder. A relatively complete generic Hoare logic for order-

enriched e�ects. In Proceedings of the 28th Annual Symposium on Logic in Computer

Science (LICS 2013), pages 273�282. IEEE, 2013.
[24] Andrew D. Gordon. Functional Programming and Input/Output. PhD thesis, University

of Cambridge, 1994.
[25] Michael J. Gordon, Arthur J. Milner, and Christopher P. Wadsworth. Edinburgh LCF:

A mechanized logic of computation. Lecture Notes in Computer Science, 1979.
[26] Ichiro Hasuo. Generic weakest precondition semantics from monads enriched with order.

Theoretical Computer Science, 604(C):2�29, 2015.
[27] Matthew Hennessy and Robin Milner. Algebraic laws for nondeterminism and concur-

rency. Journal of the ACM (JACM), 32(1):137�161, 1985.
[28] Charles A. R. Hoare. An axiomatic basis for computer programming. Communications

of the ACM, 12(10):576�580, 1969.
[29] Martin Hofmann. Logical relations and nondeterminism. In Rocco De Nicola and Rolf

Hennicker, editors, Software, Services, and Systems. Lecture Notes in Computer Science,
volume 8950, pages 62�74. Springer International Publishing, Cham, 2015.

[30] Douglas J. Howe. Equality in lazy computation systems. Proceedings of the 4th IEEE

Symposium on Logic in Computer Science, pages 198�203, 1989.
[31] Douglas J. Howe. Proving congruence of bisimulation in functional programming lan-

guages. Information and Computation, 124(2):103�112, 1996.
[32] Martin Hyland and Luke Ong. On full abstraction for PCF: I, II and III. Information

and Computation, 163:285�408, 2000.
[33] Martin Hyland, Gordon Plotkin, and John Power. Combining e�ects: Sum and tensor.

Theoretical Computer Science, 357(1):70 � 99, 2006.

BIBLIOGRAPHY 183

[34] Bart Jacobs. Introduction to Coalgebra: Towards Mathematics of States and Observation.
Cambridge University Press, 2016.

[35] Patricia Johann, Alex Simpson, and Janis Voigtländer. A generic operational metatheory
for algebraic e�ects. In Proceedings of Logic in Computer Science (LICS'10), pages 209�
218, 2010.

[36] Clair Jones. Probabilistic Non-determinism. PhD thesis, University of Edinburgh, 1989.
[37] Shin-ya Katsumata. Relating computational e�ects by ⊤⊤-lifting. In Luca Aceto, Monika

Henzinger, and Ji°í Sgall, editors, Automata, Languages and Programming, pages 174�
185, 2011.

[38] Vasileios Koutavas, Paul Blain Levy, and Eijiro Sumii. From applicative to environmental
bisimulation. Electronic Notes in Theoretical Computer Science, 276:215 � 235, 2011.
Twenty-seventh Conference on the Mathematical Foundations of Programming Semantics.

[39] Dexter Kozen. Results on the propositional µ-calculus. Theoretical Computer Science,
27(3):333 � 354, 1983. Special Issue Ninth International Colloquium on Automata, Lan-
guages and Programming (ICALP) Aarhus, Summer 1982.

[40] Søren B. Lassen. Action semantics reasoning about functional programs. Mathematical

Structures in Computer Science, 7:557�589, 1997. Special issue dedicated to the Workshop
on Logic, Domains, and Programming Languages, 1995.

[41] Søren B. Lassen. Relational Reasoning about Functions and Nondeterminism. PhD thesis,
University of Aarhus, 1998.

[42] Paul B. Levy. Call-By-Push-Value. PhD thesis, Queen Mary and West�eld College,
University of London, 2001.

[43] Paul B. Levy. Call-by-push-value: Decomposing call-by-value and call-by-name. Higher-
Order and Symbolic Computation, 19(4):377�414, 2006.

[44] Paul B. Levy. In�nitary howe's method. Electronic Notes in Theoretical Computer Sci-

ence, 164(1):85�104, 2006.
[45] Paul B. Levy. Amb breaks well-pointedness, ground amb doesn't. Electronic Notes in

Theoretical Computer Science, 173:221 � 239, 2007. Proceedings of the 23rd Conference
on the Mathematical Foundations of Programming Semantics (MFPS XXIII).

[46] Paul B. Levy. Similarity quotients as �nal coalgebras. Lecture Note in Computer Science,
6604:27�41, 2011.

[47] Paul B. Levy, John Power, and Hayo Thielecke. Modelling environments in call-by-value
programming languages. Information and Computation, 185(2):182�210, 2003.

[48] John R. Longley. Realizability Toposes and Language Semantics. PhD thesis, University
of Endinburgh, 1994.

[49] Aliaume Lopez and Alex Simpson. Basic operational preorders for algebraic e�ects in
general, and for combined probability and nondeterminism in particular. In 27th EACSL

Annual Conference on Computer Science Logic, CSL 2018, pages 29:1�29:17, 2018.
[50] �iga Luk²i£ and Matija Pretnar. Local algebraic e�ect theories, 2019. Submitted to the

Journal of Functional Programming.
[51] Kenji Maillard, Danel Ahman, Robert Atkey, Guido Martínez, Catalin Hritcu, Exequiel

Rivas, and Éric Tanter. Dijkstra monads for all. In 24th ACM SIGPLAN International

Conference on Functional Programming (ICFP), 2019.
[52] Gregory Malecha, Greg Morrisett, and Ryan Wisnesky. Trace-based veri�cation of im-

perative programs with I/O. Journal of Symbolic Computation, 46(2):95�118, 2011.

184 BIBLIOGRAPHY

[53] Radu Mardare, Prakash Panangaden, and Gordon D. Plotkin. Quantitative algebraic rea-
soning. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer

Science, LICS '16, pages 700�709, 2016.
[54] Johannes Marti and Yde Venema. Lax extensions of coalgebra functors and their logic.

J. Comput. Syst. Sci., 81(5):880�900, 2015.
[55] John McCarthy. A basis for a mathematical theory of computation. In Computer Pro-

gramming and Formal Systems, pages 33�70, 1963.
[56] Annabelle McIver and Carroll Morgan. Abstraction, Re�nement And Proof For Proba-

bilistic Systems (Monographs in Computer Science). SpringerVerlag, 2004.
[57] Rasmus E. Møgelberg and Alex Simpson. A logic for parametric polymorphism with

e�ects. In Types, volume 4941, pages 142�156, 2007.
[58] Rasmus E. Møgelberg and Alex Simpson. Relational Parametricity for Computational

E�ects. Logical Methods in Computer Science, Volume 5, Issue 3, 2009.
[59] Robin Milner. A formal notion of simulation between programs, 1970. Memo 14, Com-

puters and Logic Research Croup.
[60] Robin Milner. An algebraic de�nition of simulation between programs. In International

Joint Conference on Arti�cial Intelligence, IJCAI'71, pages 481�489, 1971.
[61] Robin Milner. Fully abstract models of typed lambda-calculi. Theoretical Computer

Science, 4:1�22, 1977.
[62] Robin Milner. A Calculus of Communicating Systems. Springer-Verlag, Berlin, Heidel-

berg, 1982.
[63] Eugenio Moggi. Notions of computation and monads. Information and Computation,

93(1):55�92, 1991.
[64] James H. Morris. Lambda-Calculus Models of Programming Languages. PhD thesis,

Massachusetts Institute of Technology, 1969.
[65] Till Mossakowski, Lutz Schröder, and Sergey Goncharov. A generic complete dynamic

logic for reasoning about purity and e�ects. Formal Aspects of Computing, 22(3�4):363�
384, 2010.

[66] Aleksandar Nanevski and Gregory Morrisett. Dependent type theory of stateful higher-
order functions. Technical Report TR-24-05, Harvard University, 2005.

[67] Aleksandar Nanevski, Gregory Morrisett, and Lars Birkedal. Hoare type theory, poly-
morphism and separation. Journal of Functional Programming, 18:865�911, 2008.

[68] Peter O'Hearn, John Reynolds, and Hongseok Yang. Local reasoning about programs
that alter data structures. In Laurent Fribourg, editor, Computer Science Logic, pages
1�19, 2001.

[69] Peter W. O'Hearn, Hongseok Yang, and John C. Reynolds. Separation and information
hiding. ACM SIGPLAN Notices, 39(1):268�280, 2004.

[70] Luke Ong. Non-determinism in a functional setting. Symposium on Logic in Computer

Science, Montreal., 8:275�286, 1993.
[71] David Park. Concurrency and automata on in�nite sequences. Lecture Notes in Computer

Science, 154:561�572, 1981.
[72] Willem Penninckx, Bart Jacobs, and Frank Piessens. Sound, modular and compositional

veri�cation of the Input/Output behavior of programs. In Jan Vitek, editor, Programming
Languages and Systems, pages 158�182, 2015.

[73] Andrew M. Pitts. Evaluation logic. In Proceedings of 4th Higher Order Workshop, pages

BIBLIOGRAPHY 185

162�189, 1991.
[74] Andrew M. Pitts. Existential types: Logical relations and operational equivalence. In

KG Larsen, S Skyum, and G Winskel, editors, Proceedings of Automata, Languages and
Programming, 25th International Colloquium, ICALP'98, volume 1443, page 309�326,
1998.

[75] Andrew M. Pitts. Parametric polymorphism and operational equivalence. Mathematical

Structures in Computer Science, 10:321�359, 2000.
[76] Andrew M. Pitts. Typed operational reasoning. In B. C. Pierce, editor, Advanced Topics

in Types and Programming Languages, chapter 7, pages 245�289. The MIT Press, London,
UK, 2005.

[77] Andrew M. Pitts. Nominal Sets: Names and Symmetry in Computer Science. Cambridge
University Press, New York, NY, USA, 2013.

[78] Gordon D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theoretical

Computer Science, 1:125�159, 1975.
[79] Gordon D. Plotkin. A powerdomain construction. Siam J. Comput., 5(3):452�487, 1976.
[80] Gordon D. Plotkin. LCF considered as a programming language. Theoretical Computer

Science, 5(3):223�255, 1977.
[81] Gordon D. Plotkin. Domains, 1983. Course notes.
[82] Gordon D. Plotkin and John Power. Adequacy for algebraic e�ects. Foundations of

Software Science and Computation Structures, pages 1�24, 2001.
[83] Gordon D. Plotkin and John Power. Notions of computation determine monads. In

Proceedings of the 5th International Conference on Foundations of Software Science and

Computation Structures, pages 342�356, 2002.
[84] Gordon D. Plotkin and John Power. Algebraic operations and generic e�ects. Applied

Categorical Structures, 11:69�94, 2003.
[85] Gordon D. Plotkin and Matija Pretnar. A logic for algebraic e�ects. In Proceedings of

Logic in Computer Science, pages 118�129, 2008.
[86] Gordon D. Plotkin and Matija Pretnar. Handling algebraic e�ects. Logical Methods in

Computer Science, 9(4):1�36, 2013.
[87] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual Sympo-

sium on the Foundations of Computer Science, pages 46�57, 1977.
[88] Yann Régis-Gianas and François Pottier. A Hoare logic for call-by-value functional pro-

grams. In Proceedings of the 9th International Conference on Mathematics of Program

Construction, MPC '08, pages 305�335, 2008.
[89] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In

Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science, LICS
'02, pages 55�74, 2002.

[90] Davide Sangiorgi. Introduction to Bisimulation and Coinduction. Cambridge University
Press, Cambridge, UK, 2011.

[91] Davide Sangiorgi, Naoki Kobayashi, and Eijiro Sumii. Environmental bisimulations for
higher-order languages. ACM Trans. Program. Lang. Syst., 33(1):5:1�5:69, 2011.

[92] Davide Sangiorgi and Jan Rutten, editors. Advanced Topics in Bisimulation and Coinduc-

tion. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
Cambridge, UK, 2011.

[93] Dana Scott. Data types as lattices. SIAM Journal on Computing, 5:522�587, 1976.

186 BIBLIOGRAPHY

[94] Dana Scott. A type-theoretical alternative to ISWIM, CUCH, OWHY. Theoretical Com-
puter Science, 121, 1993.

[95] Alex Simpson and Niels Voorneveld. Behavioural equivalence via modalities for algebraic
e�ects. In Programming Languages and Systems (ESOP 2018), pages 300�326, 2018.

[96] Alex Simpson and Niels Voorneveld. Behavioural equivalence via modalities for algebraic
e�ects. ACM Trans. Program. Lang. Syst., 42, 2020. 45 pages.

[97] Michael B. Smyth. Power domains. Journal of Computer and System Sciences, 16:23�36,
1978.

[98] Thomas Streicher. Domain-theoretic Foundations of Functional Programming. World
Scienti�c Publishing Co., Inc., River Edge, NJ, USA, 2006.

[99] Eijiro Sumii and Benjamin C. Pierce. A bisimulation for type abstraction and recursion.
ACM SIGPLAN Notices, 40(1):63�74, 2005.

[100] Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud,
Simon Forest, Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves Strub, Markulf
Kohlweiss, Jean-Karim Zinzindohoué, and Santiago Zanella-Béguelin. Dependent types
and multi-monadic e�ects in F*. In 43rd ACM SIGPLAN-SIGACT Symposium on Prin-

ciples of Programming Languages (POPL), pages 256�270, 2016.
[101] Nikhil Swamy, Joel Weinberger, Cole Schlesinger, Juan Chen, and Benjamin Livshits.

Verifying higher-order programs with the Dijkstra monad. ACM SIGPLAN Notices,
48(6):387�398, 2013.

[102] Albert Marchienus Thijs. Simulation and �xpoint semantics. PhD thesis, University of
Groningen, 1996.

[103] Matthijs Vákár, Ohad Kammar, and Sam Staton. A domain theory for statistical prob-
abilistic programming. Proc. ACM Program. Lang., 3(POPL):36:1�36:29, 2019.

[104] Niels Voorneveld. Non-deterministic e�ects in a realizability model. Electronic Notes in

Theoretical Computer Science, 336:299 � 314, 2018. The Thirty-third Conference on the
Mathematical Foundations of Programming Semantics (MFPS XXXIII).

[105] Niels Voorneveld. Quantitative logics for equivalence of e�ectful programs. In Proc. of

MFPS XXXV (Thirty-Fifth Conference on the Mathematical Foundations of Program-

ming Semantics), ENTCS. Elsevier, 2019. To appear.
[106] Philip Wadler. Monads for functional programming. Program Design Calculi, 118:233�

264, 1993.
[107] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness.

Information and Computation, 115(1):38 � 94, 1994.

Raz²irjeni povzetek v slovenskem jeziku

Disertacija preu£uje pojem enakovrednosti programov za funkcijski programski jezik z
algebrajskimi u£inki in splo²no rekurzijo, ki uporablja klic po naloºeni vrednosti (call-by-
push-value oz. na kratko cbpv). Osredoto£amo se predvsem na vedenjsko ekvivalenco,
pri £emer je obna²anje programa dolo£eno z zbirko formul, ki so odvisne od u£inkov.
Dva programa istega tipa imamo za enakovredna, £e zado²£ata istim formulam, ki iz-
raºajo vedenjske lastnosti programov. Vpliv u£inkov na izra£un programa opi²emo z
modalnostmi. Da bi u£inke laºje kombinirali, logiko posplo²imo v kvantitativno logiko
s kvantitativnimi modalnostmi.

Eden glavnih prispevkov disertacije je dolo£itev pogojev na modalnostih, pri katerih
je vedenjska ekvivalenca, ki jo inducira logika, kongruenca. To pomeni, da programi
ne lo£ijo med enakovrednimi izrazi. Pogoji vklju£ujejo relevantne lastnosti zveznosti,
ki se ti£ejo izra£unov programov, ki se potencialno ne kon£ajo, in pojem razcepnosti,
ki obravnava zaporedje izra£unov (zaporedno izvajanje programov). Pod temi pogoji
vedenjska ekvivalenca sovpada s ²e enim pojmom ekvivalence programov, aplikativno
bipodobnostjo, za katero je kongruenca dokazana preko Howejeve metode.

Disertacija prispeva tudi na£ina, kako lahko rezultate uporabimo na nekaterih pri-
merih kombinacij u£inkov in kako modalnosti inducirajo prave ena£be med programi
z u£inki. Preu£imo tudi nekatere razli£ice logike in razi²£emo situacije, v katerih te
razli£ice logike inducirajo isto ekvivalenco.

Poglavje 2: Jezik in operacijska semantika

Ogledamo si funkcijski programski jezik [42, 43] z algebrajskimi u£inki in splo²no rekur-
zijo, ki uporablja pristop cbpv. Programski jezik ima tipe vrednosti in tipe izra£unov,
ki so rekurzivno podani z:

A,B ::= UC | 1 | N | Σi∈I Ai | A×B,
C,D ::= FA | A → C | Πi∈I Ci.

Sintaksa izrazov in pravila za tipe so podani na sliki 2.1, kjer je Γ kontekst, ki
vsebuje spremenljivke tipov vrednosti. Pi²emo Terms(E...) za zaprte izraze tipa E....

Izraz lahko evalviramo in tako reduciramo na kon£ni izraz oblike return(V), λx.M
ali ⟨M i | i ∈ I⟩. Tak²na evalvacija lahko traja ve£no ali kaºe sproºanje u£inkov.

187

188 RAZ�IRJENI POVZETEK V SLOVENSKEM JEZIKU

Γ ⊢ ∗ : 1 Γ ⊢ Z : N

Γ ⊢ V : N

Γ ⊢ S(V) : N

Γ ⊢ V : N Γ ⊢ M : C Γ, x : N ⊢ N : C

Γ ⊢ case V of {M,S(x) ⇒ N} : C

Γ, x : A,Γ′ ⊢ x : A

Γ ⊢ V : A Γ, x : A ⊢ M : C

Γ ⊢ let x be V.M : C

Γ ⊢ V : A

Γ ⊢ return(V) : FA

Γ ⊢ M : FA Γ, x : A ⊢ N : C

Γ ⊢ M to x.N : C

Γ ⊢ M : C

Γ ⊢ thunk(M) : UC

Γ ⊢ V : UC

Γ ⊢ force(V) : C

Γ, x : A ⊢ M : C

Γ ⊢ λx.M : A → C

Γ ⊢ V : A Γ ⊢ M : A → C

Γ ⊢ M V : C

Γ ⊢ V : Aj

Γ ⊢ (j, V) : Σi∈I Ai

Γ ⊢ V : Σi∈I Ai Γ, x : Ai ⊢ M i : C za vsako i ∈ I

Γ ⊢ pm V as {. . . , (i.x).M i, . . . } : C

Γ ⊢ V : A Γ ⊢W : B

Γ ⊢ (V,W) : A×B

Γ ⊢ V : A×B Γ, x : A, y : B ⊢ M : C

Γ ⊢ pm V as (x, y).M : C

Γ ⊢ M i : Ci za vsak i ∈ I

Γ ⊢ ⟨M i | i ∈ I⟩ : Πi∈I Ci

Γ ⊢ M : Πi∈I Ci j ∈ I

Γ ⊢ M j : Cj

Γ ⊢ M : UC → C

Γ ⊢ fix(M) : C

Slika 2.1: Pravila za tipe.

Γ ⊢ Vi : N za vsak 1 ≤ i ≤ n Γ ⊢ M i : C za vsak 1 ≤ i ≤ m

Γ ⊢ op(V1, . . . , Vn,M1, . . . ,Mm) : C
(op : Nn × αm → α) ∈ Σ

Γ ⊢ Vi : N za vsak 1 ≤ i ≤ n Γ, x : N ⊢ M : C

Γ ⊢ op(V1, . . . , Vn, x ↦→M) : C
(op : Nn × αN → α) ∈ Σ

Slika 2.2: Pravila za tipe za u£inke.

V jezik vnesemo algebrajske u£inke tako, da ga raz²irimo z mnoºico u£inkovnih
operacij, ki so zbrane v signaturi u£inkov Σ. Pravila za tipe tovrstne operacije so
podana na sliki 2.2.

Operacijska semantika programskih izrazov je podana v razdelkih 2.1 in 2.2, izrazi
tipov izra£unov se evalvirajo v drevesa u£inkov. Neformalno izra£un, ki je izraz tipa
izra£una, evalviramo v drevo, £igar vozli²£a opisujejo moºne pojavitve u£inkovne ope-
racije.

De�nicija 2.2.1. Drevo u£inkov (e�ect tree) (v nadaljevanju drevo) TX nad mnoºico
X, dolo£eno s signaturo u£inkov Σ, je drevo morda neskon£ne globine, £igar vozli²£a so
ozna£ena z u£inkovnimi operacijami in listi bodisi z rezultatom ⟨x⟩, kjer je x ∈ X, ali s
simbolom ⊥ za divergenco.

Mnoºico TX opremimo z ω-polno urejenostjo takoj po de�niciji 2.2.1 v osrednjem
delu disertacije. �e ve£, T dodamo strukturo monade, vklju£no z enotami η : X → TX

in preslikavami mnoºenja µ : TTX → TX za vsako mnoºico X.

189

Redukcijo na drevo nato de�niramo kot preslikavo |−| : Terms(C) → T (Terms(C)),
ki slika izra£une v drevesa u£inkov. Pri tem uporabimo funkcijo za aproksimacijo dreves
iz de�nicije 2.2.3.

Neformalno je ta aproksimativna funkcija de�nirana na naslednji na£in. Izra£un
evalviramo, dokler se evalvacijski proces, ki je deterministi£en, ne kon£a (£e se to ne
zgodi, je drevo enako ⊥). �e pa se evalvacijski proces kon£a v kon�guraciji, ki vsebuje
u£inkovno operacijo op(. . .), v drevesu ustvarimo notranje vozli²£e, ki ga ozna£imo op.
Nato nadaljujemo z izgradnjo dreves za podizra£une operacije op(. . .) kot otroke danega
vozli²£a tako, da proces ponovimo.

Primeri u£inkov

V razdelku 2.3 obravnavamo mnoge primere u£inkov, ki so v literaturi morda standardni,
a bodo sluºili kot tipi£ni primeri v disertaciji.

Napaka: Vzemimo mnoºico obvestil o napaki Err in za vsako obvestilo e ∈ Err

dodajmo u£inkovno operacijo raisee() : 1 → α. Torej je na²a signatura enaka
Σer := {raisee() : 1 → α | e ∈ Err}, kjer izra£un raisee() prekine evalvacijo in prikaºe
e kot obvestilo o napaki.

Nedeterminizem: Naj bo or(−,−) : α2 → α binarna operacija izbire, ki poda dve
moºnosti nadaljevanja izra£una. �e podamo dva izra£unaM in N , je or(M,N) izra£un,
ki nadaljuje evalvacijo bodisi kotM bodisi kotN . Katera od obeh moºnosti bo obveljala,
ne vemo.

Verjetnost: Verjetnostno izbiro implementiramo z uporabo binarne operacije izbire
pr(−,−) : α2 → α, ki vrne dve moºnosti za nadaljevanje izra£una. Na²a signatura u£in-
kov je Σpr := {pr(−,−) : α2 → α}. V tem primeru je izbira nadaljevanja verjetnostna,
saj ima pr(M,N) enako verjetnost za nadaljevanje z izra£unom M ali N .

Globalni pomnilnik: Oglejmo si primer, ko imajo programi lahko interakcije z ne-
kim globalnim pomnilnikom ter lahko iz njega berejo in vanj pi²ejo. Naj bo Loc

mnoºica lokacij za shranjevanje naravnih ²tevil. Za vsako lokacijo l ∈ Loc imamo
dve u£inkovni operaciji lookupl(−) : αN → α in updatel(−;−) : N × α → α,
Σgs := {lookupl(−), updatel(−;−) | l ∈ Loc}. Izra£un lookupl(x ↦→ M) prebere ²te-
vilo na lokaciji l in ga zamenja za x v M , izra£un updatel(n;M) pa shrani n na lokaciji
l in nadaljuje z izra£unom M .

Vhod/Izhod: Vzemimo operaciji read(−) : αN → α, ki prebere ²tevilo z vhoda in
ga poda kot argument nekemu izra£unu, in write(−;−) : N × α → α, ki izpi²e ²tevilo
(prvi argument) na zaslon in nato nadaljuje z izra£unom iz drugega argumenta. Skupaj
tvorita signaturo Σio := {read(−) : αN,write(−;−) : N → α× α→ α}.

190 RAZ�IRJENI POVZETEK V SLOVENSKEM JEZIKU

n ∈ N
{n} ∈ Form(N)

ϕ ∈ Form(C)

⟨ϕ⟩ ∈ Form(UC)

j ∈ I ϕ ∈ Form(Aj)

(j, ϕ) ∈ Form(Σi∈I Ai)

ϕ ∈ Form(A)

π0(ϕ) ∈ Form(A×B)

ϕ ∈ Form(B)

π1(ϕ) ∈ Form(A×B)

V ∈ Terms(A) ϕ ∈ Form(C)

(V ↦→ ϕ) ∈ Form(A → C)

o ∈ O ϕ ∈ Form(A)

o(ϕ) ∈ Form(FA)

ϕ ∈ Form(Cj)

(j ↦→ ϕ) ∈ Form(Πi∈I Ci)

X ⊆countable Form(E...)⋁︁
X ∈ Form(E...)

X ⊆countable Form(E...)⋀︁
X ∈ Form(E...)

ϕ... ∈ Form(E...)

¬(ϕ...) ∈ Form(E...)

Slika 3.1: Konstruktorji formul.

�asomer: De�niramo izra£unljivo mnoºico racionalnih £asovnih korakov Inc ⊂ Q,
kjer imamo za vsak c ∈ Inc operacijo tickc(−) : α → α. Na²a signatura u£inkov je
Σti := {tickc(−) : α → α | c ∈ Inc}, kjer je tickc(M) izra£un, pri katerem evalvacijo
odloºimo za £as c, nato pa nadaljujemo z izra£unom M .

Poglavje 3: Vedenjska ekvivalenca

V tem poglavju de�niramo pojem ekvivalence med programi, ki nas zanima, tj. vedenj-
sko ekvivalenco. Najprej induktivno podamo logiko vedenjskih lastnosti jezika tako, da
za vsak tip E... de�niramo mnoºico formul Form(E...). Pravila za to de�nicijo so podana
na sliki 3.1. Z V ozna£imo mnoºico vseh formul in z V+ mnoºico tistih formul, ki ne
vsebujejo negacij `¬'.

Naj bo ϕ... formula in P... izraz. Dejstvo, da ima P... lastnost ϕ..., pi²emo kot P... |= ϕ.... Za
de�nicijo logike na sliki 3.1 je klju£nega pomena, da smo dolo£ili mnoºico modalnosti
O, kar je tudi temeljni prispevek te disertacije.

Modalnosti za u£inke

Mnoºico modalnosti O uporabljamo, da dolo£imo obna²anje z u£inki. Vsaka modalnost
o ∈ O poda podmnoºico JoK dreves u£inkov z enotskim tipom T ({∗}). Naj bo ϕ formula
in |M |[|= ϕ] drevo, ki ga dobimo, ko zamenjamo vse liste ⟨return(V)⟩ drevesa |M | z ⟨∗⟩,
£e velja V |= ϕ, in z ⊥, £e velja V ̸|= ϕ. Potem velja M |= o(ϕ), £e je |M |[|= ϕ] v
mnoºici JoK. Oglejmo si nekaj neformalnih opisov primerov modalnosti.

Napaka, zaznava obvestila: Oer = {↓} ∪ {Ee | e ∈ Err}, kjer je J↓K := {⟨∗⟩} in
JEeK = {raisee}. �e M vrne vrednost, ki zado²£a ϕ, velja M |=↓ (ϕ), in £e M sproºi
obvestilo o napaki e, velja M |= raisee(ϕ).

191

Nedeterminizem, lahkó in móra: De�nirajmo Ond = {♢, □}, kjer je J♢K = {t |
t ima neki list z oznako ⟨∗⟩} in J□K = {t | t je kon£no drevo in vsak list je ozna£en
z ⟨∗⟩}. �e M lahko vrne vrednost, ki zado²£a formuli ϕ, velja M |= ♢(ϕ), in £e
M mora vrniti vrednost, ki zado²£a formuli ϕ, velja M |= □(ϕ). Za O imamo tri
moºnosti: {♢, □} za nevtralni nedeterminizem, {♢} za angelski nedeterminizem in {□}
za demonski nedeterminizem.

Verjetnost, pri£akovana zadostitev formul: De�niramo Opr = {P>q |
q ∈ Q, 0 ≤ q ≤ 1}, kjer JP>qK poda mnoºico dreves t ∈ T ({∗}), za katera je verje-
tnost, da pridemo do lista, ozna£enega z ⟨∗⟩, ve£ja od q. �e je verjetnost, da M vrne
vrednost, ki zado²£a ϕ, ve£ja od q, velja M |= P>q(ϕ).

Globalni pomnilnik, modalnosti za prehod stanja: De�niramo mnoºico global-
nih stanj State = NLoc, kjer za s ∈ State, s(l) = m pomeni, da je ²tevilo m shranjeno
na lokaciji l. Modalnosti podamo z mnoºico Ogs = {(s↣ r) | s, r ∈ State}, kjer velja
M |= (s↣r)(ϕ), £e bo, ko evalviramo M z globalnim pomnilnikom v za£etnem stanju
s, izraz M vrnil vrednost, ki zado²£a ϕ, in bo nato globalni pomnilnik v stanju r.

Vhod/izhod, sledi: De�niramo vhodno/izhodno sled kot besedo w nad abecedo {?n |
n ∈ N}∪{!n | n ∈ N}. Pri tem ?n opisuje dejstvo, da je program kot vhodni podatek od
uporabnika dobil n, in !n dejstvo, da je program uporabniku vrnil n kot izhodni podatek.
Kot mnoºico modalnosti vzamemo Oio = {⟨w⟩↓, ⟨w⟩... | w vhodno/izhodna sled}. �e je
w moºna sled za izraz M , velja M |= ⟨w⟩...(ϕ). �e je w moºna sled za izraz M , ki vrne
vrednost, ki zado²£a formuli ϕ, potem velja M |= ⟨w⟩↓ (ϕ).

�asomer, potrebni £as: Naj bo O↓
ti = {C≤q | q ∈ Q≥0} mnoºica modalnosti, kjer

velja M |= C≤q(ϕ), £e se evalvacija izraza M kon£a, vrne vrednost, ki zado²£a formuli
ϕ, in je bila odloºena za najve£ q £asa.

Formalno de�nirajmo, kaj pomeni, da programi zado²£ajo formulam. Za vsak tip E...
imamo zadostitveno relacijo |= ⊆ Terms(E...)×Form(E...), ki jo de�niramo z naslednjimi
pravili:

V |= {n} ⇐⇒ V = n, V |= ⟨ϕ⟩ ⇐⇒ force(V) |= ϕ.

(i, V) |= (j, ϕ) ⇐⇒ i = j ∧ V |= ϕ, (V,W) |= π0(ϕ) ⇐⇒ V |= ϕ.

(V,W) |= π1(ϕ) ⇐⇒ W |= ϕ, M |= (V ↦→ ϕ) ⇐⇒ M V |= ϕ.

M |= o(ϕ) ⇐⇒ |M |[|= ϕ] ∈ JoK, M |= (j ↦→ ϕ) ⇐⇒ M j |= ϕ.

P... |=
⋁︂
X ⇐⇒ ∃ϕ... ∈ X. P... |= ϕ..., P... |=

⋀︂
X ⇐⇒ ∀ϕ... ∈ X.P... |= ϕ....

P... |= ¬(ϕ...) ⇐⇒ ¬(P... |= ϕ...).

192 RAZ�IRJENI POVZETEK V SLOVENSKEM JEZIKU

Logi£ne ²ibke urejenosti

Logiko vpeljemo z namenom, da dolo£imo ²ibko urejenost na izrazih. Naj bosta L
podmnoºica L ⊆ V in E... tip. Pi²emo Form(E...)L za Form(E...) ∩ L. Vsaka podmnoºica
logike de�nira naravno ekvivalenco, kjer sta dva izraza v relaciji, £e zado²£ata istim
formulam. To ekvivalenco lahko podamo z logi£no ²ibko urejenostjo tako, da je izraz R...
nad izrazom P..., £e R... zado²£a vsem formulam, ki jim zado²£a tudi izraz P....

De�nicija 3.3.2. Za vsako podmnoºico logike L ⊆ V de�niramo logi£no ²ibko urejenost
⊑L, tako da velja:

∀P..., R... : E..., P... ⊑L R... ⇐⇒ (∀ϕ... ∈ Form(E...)L, P... |= ϕ... ⇒ R... |= ϕ...).

Splo²na vedenjska ²ibka urejenost ⊑ je logi£na ²ibka urejenost na V, medtem ko je
pozitivna vedenjska ²ibka urejenost ⊑+ logi£na ²ibka urejenost na V+. Za ekvivalence,
ki jih inducirajo ²ibke urejenosti ≡L, ≡ in ≡+, pi²emo ⊑L, ⊑, in ⊑+.

Splo²na vedenjska ²ibka urejenost ⊑ je simetri£na, torej je enaka splo²ni vedenjski
ekvivalenci ≡.

Naslednji rezultat je eden glavnih prispevkov te disertacije. Lastnosti razcepnost in
Scottova odprtost sta de�nirani kasneje.

Izrek 3.3.8 (Izrek o zdruºljivosti). Naj boO razcepna mnoºica Scottovo odprtih modal-
nosti. Tedaj sta odprti raz²iritvi polne vedenjske ekvivalence ≡ in pozitivne vedenjske
²ibke urejenosti ⊑+ zdruºljivi.

Intuitivno to pomeni, da so ekvivalence kongruence in da so ²ibke urejenosti ²ibke
kongruence. Pojasnimo ²e lastnosti, ki nastopata v izreku.

De�nicija 3.3.10. Pravimo, da je modalnost o ∈ O Scottovo odprta, £e je JoK odprta
podmnoºica v Scottovi topologiji na T ({∗}), tj. £e je t1 ≤ t2 ≤ . . . nara²£ajo£a veriga
v T ({∗}), potem velja

⨆︁
i ti ∈ JoK ⇐⇒ ∃n ∈ N.tn ∈ JoK.

Razcepnost je lastnost preslikave mnoºenja µ : T (T ({∗})) → T ({∗}), ki pripada
strukturi monade. Neformalno je vloga razcepnosti zagotoviti, da preslikava mnoºenja
ohranja pozitivno ²ibko urejenost ⊑+. V formalni de�niciji uporabimo abstraktni re-
laciji ≼ ⊆ T ({∗}) × T ({∗}) in ⋞ ⊆ T (T ({∗})) × T (T ({∗})), ki ju de�niramo preko
modalnosti iz mnoºice O. Formalni de�niciji teh relacij sta podani v razdelku 3.3.2.

De�nicija 3.3.20 (Razcepnost). Pravimo, da je mnoºica modalnosti O razcepna, £e
za vsa dvojna drevesa r, r′ ∈ T (T ({∗})) r ⋞ r′ implicira µr ≼ µr′.

V razdelku 3.3.3 pokaºemo, da je za vse primere u£inkov, ki smo jih podali zgoraj,
njihova mnoºica modalnosti O razcepna mnoºica Scottovo odprtih modalnosti.

193

Algebrajske teorije

V literaturi je enakost med programi mnogokrat opredeljena preko aksiomov enakosti, ki
jim morajo u£inki zadostiti. V tej disertaciji pa kot osnovo uporabimo pojem modalnosti
in so nato ena£be inducirane glede na to, katere modalnosti izberemo. Da bi to natan£no
povedali, oblikujemo abstrakten pojem ena£be, inducirane z modalnostmi.

Ozna£imo spremenljivke z naravnimi ²tevili in naj bodo e ∈ T (N) posplo²eni alge-
brajski izrazi kot v [49]. Modalnosti iz mnoºice O inducirajo relaciji ˆ︁≤ in ˆ︁= na T (N)
(de�nicija 3.5.3). Ker je O razcepna mnoºica Scottovo odprtih modalnosti, je ˆ︁≤ dopu-

stna, ˆ︁≤ in ˆ︁= pa sta kompozicijski (glej [35]). �e ve£, ˆ︁≤ in ˆ︁= sluºita kot abstrakciji
(algebrajskima izrazoma) ⊑+ in ≡.

V disertaciji smo pokazali, da za vsak primer u£inka s signaturo u£inkov Σ in iz-
brano mnoºico modalnosti OΣ nastala relacija ˆ︁≤ zado²£a obi£ajnim neenakostim, ki so
speci�£ne za u£inke (na primer tistim iz [83, 84]). To smo izvedli v lemi 3.5.13.

Ne moremo pa vseh algebrajskih teorij inducirati z razcepno mnoºico Scottovo od-
prtih modalnosti. �e posebej to velja za nekatere algebrajske teorije za kombinacije
u£inkov. Z uporabo zgornjih orodij lahko pokaºemo naslednji dejstvi:

Lema 3.5.17. Vsaka razcepna mnoºica Scottovo odprtih modalnosti, ki je de�nirana
za kombinacijo u£inkov globalnega pomnilnika in demonskega nedeterminizma in ki
zado²£a ºelenim ena£bam za tak²ne u£inke, tudi inducira x ˆ︁=⊥ (vsak izraz je enak ⊥).

Podoben rezultat pokaºemo v lemi 3.5.19, kjer dokaºemo, da ne moremo najti razce-
pne mnoºice Scottovo odprtih modalnosti za opis kombinacije verjetnosti in angelskega
nedeterminizma. Zaklju£imo lahko, da kombinacije globalnega pomnilnika in nedeter-
minizma ne moremo pravilno opisati s tak²no Boolovo logiko, kot smo jo predstavili v
poglavju 3. To nam sluºi kot motivacija, da v poglavju 6 logiko posplo²imo na kvanti-
tativno logiko.

Poglavje 4: Aplikativna bipodobnost

Oglejmo si alternativni pojem enakosti med programi, aplikativno bipodobnost [2], ki
ga uporabimo v dokazu izreka o zdruºljivosti 3.3.8.

Naj bo t ∈ T (X) drevo in A ⊆ X. De�niramo t[A] ∈ T ({∗}) kot drevo, ki ga
dobimo tako, da v t vse liste z oznako x ∈ A zamenjamo z ∗ in vse liste z oznako
x ∈ (X − A) zamenjamo z ⊥. Za dano signaturo Σ in mnoºico modalnosti O (za Σ)
de�niramo operacijo O(−) : P(X × Y) → P(T (X)× T (Y)) kot1:

t O(R) r ⇐⇒ ∀D ⊆ X, o ∈ O, (t[D] ∈ JoK ⇒ r[{y ∈ Y | ∃x ∈ D,xR y}] ∈ JoK.

V razdelku 4.1 pokaºemo, da ta operacija zado²£a lastnostim relatorja, ki je de�niran
v de�niciji 4.1.1.

1Za relacijo R ⊆ X × Y pi²emo x R y namesto (x, y) ∈ R

194 RAZ�IRJENI POVZETEK V SLOVENSKEM JEZIKU

Aplikativne simulacije

Relator uporabimo, da de�niramo razli£ice Abramskyjeve aplikativne podobnosti (appli-
cative similarity) in aplikativne bipodobnosti (applicative bisimilarity) [2, 14], ki ustre-
zajo na²emu jeziku.

De�nicija 4.2.1. Dobro tipizirana relacija R na zaprtih izrazih je aplikativna O-

simulacija, £e velja:

1. V RNW =⇒ V =W .

2. thunk(M)RUC thunk(N) =⇒ M RCN .

3. (j, V)RΣi∈I Ai (k,W) =⇒ (j = k) ∧ V RAj W .

4. (V, V ′)RA×B (W,W ′) =⇒ V RAW ∧ V ′RBW
′.

5. M RA→CN =⇒ ∀V ∈ Terms(A),M V RCN V .

6. M RFAN =⇒ |M | O(RA) |N |.

7. M RΠi∈I Ci
N =⇒ ∀j ∈ I,M jRMj

N j.

De�niramo ²e dve relaciji: Aplikativna O-podobnost (Applicative O-similarity) je najve-
£ja O-simulacija in Aplikativna O-bipodobnost (Applicative O-bisimilarity) je najve£ja
simetri£na O-simulacija.

Izrek 4.2.7 in 4.2.8 (Izreka o sovpadanju). �e so vse modalnosti Scottovo odprte,
potem je pozitivna vedenjska ²ibka urejenost ⊑+ aplikativna O-podobnost, polna ve-
denjska ekvivalenca ≡ je aplikativna O-bipodobnost.

Z uporabo Howejeve metode [14, 31] v razdelkih 4.4 in 4.5 pokaºemo naslednja
izreka:

Izrek 4.5.2 in 4.5.5. �e je O razcepna mnoºica Scottovo odprtih modalnosti, potem
sta relaciji aplikativne O-podobnosti in aplikativne O-bipodobnosti zdruºljivi.

Zaklju£imo lahko, da izrek o zdruºljivosti 3.3.8 velja.

Poglavje 5: Razli£ice logike

Splo²na vedenjska ekvivalenca ≡ in pozitivna vedenjska ²ibka urejenost ⊑+ sta induci-
rani z logikama V in V+. Logiki pa lahko na razli£ne na£ine preoblikujemo, ne da bi pri
tem spremenili inducirani logi£ni ²ibki urejenosti. Zamenjamo lahko osnovno formulo
vrednosti (V ↦→ ψ) z alternativno formulo (ϕ ↦→ ψ), katere semantiko podamo z:

M |= (ϕ ↦→ ψ) :⇐⇒ ∀W : A, (W |= ϕ⇒M W |= ψ) .

S F ozna£imo dobljeno logiko z negacijo in s F+ logiko brez negacije. Menjava lo-
gike ima konceptualno prednost v tem, da se formule ne sklicujejo na sintakso izrazov
programskega jezika.

195

Posledica 5.4.3. �e je ≡V kongruenca, potem velja (≡V) = (≡F), in £e je ⊑V+ ²ibka
kongruenca, potem velja (⊑V+) = (⊑F+).

Ne da bi spremenili inducirano logi£no ²ibko urejenost, lahko logiko preoblikujemo
tudi na naslednje na£ine:

� De�niramo logiko V∗, pri kateri formule izra£unov ne vsebujejo konjunkcij, dis-
junkcij in negacij. V posledici 5.1.4 pojasnimo, da ≡V sovpada z ≡V∗ .

� Namesto ²tevne disjunkcije uporabimo kon£no disjunkcijo in tako de�niramo lo-
giko (O,∨,

⋀︁
,¬). Z lemo 5.2.6 zagotovimo, da se ≡V sklada z ≡(O,∨,

⋀︁
,¬), £e so

vse modalnosti Scottovo odprte.

� Brez uporabe disjunkcij, konjunkcij ali negacij de�niramo logiko (O,⊥,⊤,+). V
trditvi 5.2.11 povemo, da ≡V sovpada z ≡(O,⊥,⊤,+), £e so u£inki napaka, globalni
pomnilnik, vhod/izhod ali £asomer.

V razdelku 5.3 obravnavamo kombinacije u£inkov in de�niramo pripadajo£e Boolove
modalnosti, ki opisujejo obna²anje teh kombinacij. Dolo£imo tudi okoli²£ine, v katerih
Boolove modalnosti tvorijo mnoºico Scottovo odprtih modalnosti. Nekaj pozitivnih
rezultatov se nahaja v lemah 5.3.4, 5.3.7 in drugih. Vendar pa, kot smo ºe videli,
dobimo tudi nekaj negativnih rezultatov, ki motivirajo posplo²itev na kvantitativno
logiko.

Poglavje 6: Kvantitativna logika

Ker ºelimo opisati vedenjsko ekvivalenco za jezike z dolo£enimi kombinacijami u£inkov
ali pa podati bolj naraven na£in za opisovanje vedenjskih lastnosti programov z u£inki,
posplo²imo Boolovo logiko na kvantitativno logiko.

Kot prostor resni£nostnih vrednosti uporabimo mreºo A z urejenostjo ⊴, ki je ²tevno
polna. To pomeni, da imamo za vsako ²tevno podmnoºico X ⊆ A najmanj²o zgornjo

mejo (supremum)
⋁︁
X in najve£jo spodnjo mejo (in�mum)

⋀︁
X. Naj bosta T in F

najve£ji ter najmanj²i element mnoºice A. Dodatno zahtevamo obstoj involucije na
mnoºici A, saj jo bomo uporabili za modeliranje negacije. Involucijo podamo s preslikavo
¬ : A → A, pri £emer velja ∀a, b ∈ A, a ⊴ b ⇐⇒ ¬b ⊴ ¬a in ∀a,¬¬a = a.

Relacije zadostitve `|=' naredimo kvantitativne, tako da so to zdaj funkcije |= :

Terms(E...)×Form(E...) → A za vsak tip E.... Logiko na sliki 3.1 raz²irimo z dvema novima
konstruktorjema formul:

ϕ... ∈ Form(E...) a ∈ A
ϕ...⊵a ∈ Form(E...)

a ∈ A
κa ∈ Form(E...)

,

kjer de�niramo P... |= ϕ...⊵a :=

⎧⎨⎩T £e (P... |= ϕ...) ⊵ a.

F sicer.
P... |= κa := a.

196 RAZ�IRJENI POVZETEK V SLOVENSKEM JEZIKU

Za vse ostale relacije zadostitve v de�niciji Boolove logike zamenjamo `⇔' z `='. V
razdelku 6.1.1 se nahaja formalna de�nicija kvantitativne relacije zadostitve.

U£inke interpretiramo z uporabo kvantitativnih modalnosti Q, kjer vsaka operacija
q ∈ Q podaja funkcijo JqK : T (A) → A. De�niramo M |= q(ϕ) tako, da v drevesu |M |
zamenjamo vse liste oblike ⟨return(V)⟩ z ⟨V |= ϕ⟩ in rezultat podamo funkciji JqK. Naj
bo U polna logika in U+ logika brez negacij.

De�nicija 6.3.1. Naj bo L ⊆ U podmnoºica logike. Logi£no ²ibko urejenost ⊑L
de�niramo z ekvivalenco:

∀P..., R... ∈ Terms(E...), P... ⊑L R... ⇐⇒ ∀ϕ... ∈ Form(E...)L, P... |= ϕ... ⊴ R... |= ϕ...

Logi£no ekvivalenco ≡L dobimo kot presek ⊑L ∩ ⊒L.

Primeri

V splo²nem velja JqK(⟨a⟩) = a in JqK(⊥) = F. Oglejmo si nekaj primerov prostorov
resni£nostnih vrednosti in kvantitativnih modalnosti za u£inke in njihove kombinacije.

Verjetnost: Kot polno mreºo resni£nostnih vrednosti uporabimo prostor realnih ver-
jetnosti A := [0, 1], ki vsebuje verjetnosti resnice. Urejenost ⊴ je kar `≤' in za negacijo
¬ vzamemo ¬x = 1 − x. De�niramo zgolj eno kvantitativno modalnost E, ki ozna£uje
pri£akovano vrednost in za katero velja JEK(pr(t, r)) := (JEKn(t) + JEKn(r))/2.

Globalni pomnilnik: Kot prostor resni£nostnih vrednosti uporabimo mnoºico stanj
A := P(NLoc) in jo uredimo z inkluzijo. Zopet podamo zgolj eno kvantitativno mo-
dalnost G, za katero velja: JGK(lookupl(t0, t1, . . .)) := {s ∈ NLoc | s ∈ JGK(ts(l))} in
JGK(updatel(m; t)) := {s ∈ NLoc | s[l := m] ∈ JGK(t)}.

�asomer: Prostor resni£nostnih vrednosti je tokrat interval £asovnih zamikov A :=

[0,∞], ki ga uredimo z obratno urejenostjo, in de�niramo kvantitativno modalnost C,
tako da velja JCK(tickc(t)) := c+ JCK(t).

Dodajanje nedeterminizma: Zgornjim primerom lahko dodamo nedeterminizem na
naslednji na£in. Za prostor resni£nostnih vrednosti obdrºimo A in za vsako modalnost
q ∈ Q de�niramo dve razli£ici q♢ in q□. Zanju veljata naslednji pravili: Jq♢K(or(t, r)) :=
Jq♢K(t)∨Jq♢K(r) in Jq□K(or(t, r)) := Jq□K(t)∧Jq□K(r), kjer sta operaciji ∨ in ∧ de�nirani
s strukturo mreºe na A.

Zgornji primeri in tudi druge kombinacije u£inkov, kot na primer kombinacija verje-
tnosti in globalnega pomnilnika ali kombinacije z napako, so pojasnjeni v razdelku 6.2.

197

Zdruºljivost

Vse zgornje rezultate, ki se nana²ajo na Boolovo logiko, lahko raz²irimo na kvantitativno
logiko, £e posplo²imo pojma razcepnosti in Scottove odprtosti. Dokaºemo lahko, da se
≡U in aplikativna Q-bipodobnost skladata in da sta kongruenci. Podrobnosti so v
razdelkih 6.3 in 6.4, podamo pa kratek povzetek.

Naj bosta h : X → Y in t ∈ T (X). Naj bo t[h] ∈ T (Y) drevo, ki ga dobimo, ko
zamenjamo liste, ozna£ene z x ∈ X, z listi z oznako h(x) ∈ Y .

De�nicija 6.4.1. Za dano mnoºico kvantitativnih modalnosti Q imamo operacijo
Q(−) : P(X × Y) → P(TX × TY), ki je podana z ekvivalenco

tQ(R) t′ ⇐⇒ ∀h : X → A, ∀q ∈ Q, JqK(t[h]) ⊴ JqK(t′[λy.
⋁︂

{h(x) | x ∈ X,xRy}].

Pojem Scottove odprtosti za mnoºico Boolovih modalnosti zamenjamo z listno mo-
notonostjo in drevesno Scottovo zveznostjo, ki sta de�nirani v razdelku 6.3.1. Razce-
pnost posplo²imo v de�nicijah 6.3.7, 6.3.9 in 6.3.11, lahko pa jo karakteriziramo tudi z
naslednjo posledico.

Posledica 6.4.13. �e so vse modalnosti q ∈ Q listno monotone, potem je Q raz-
cepna mnoºica natanko tedaj, ko velja ∀R ⊆ X × Y, ∀r, r′ ∈ TTA, rQ(Q(R)) r′ ⇒
µrQ(R)µr′.

Izrek 6.3.15 (Posplo²eni izrek o zdruºljivosti). Naj bo Q razcepna mnoºica listno
monotonih drevesno Scottovo zveznih modalnosti. Tedaj sta odprti raz²iritvi ≡U in
⊑U+ zdruºljivi.

�e so vse modalnosti q ∈ Q listno monotone, potem je po lemi 6.4.2 Q(−) relator.
Aplikativno Q-simulacijo de�niramo kot v de�niciji 4.2.1, vendar uporabimo relator
Q(−) namesto O(−) . Enako drºi tudi za aplikativno Q-podobnost in aplikativno Q-

bipodobnost.

Izrek 6.4.8 (Posplo²eni izrek o sovpadanju). Naj Q vsebuje le listno monotone mo-
dalnosti. Tedaj je logi£na ²ibka urejenost ⊑U+ Q-podobnost in logi£na ekvivalenca ⊑U
Q-bipodobnost.

Izrek 6.4.14. AplikativnaQ-podobnost in aplikativnaQ-bipodobnost sta kompatibilni,
£e je Q razcepna mnoºica listno monotonih drevesno Scottovo zveznih modalnosti.

Izreka sta dokazana v razdelku 6.4.

Poglavje 7: Polimorfni in rekurzivni tipi

V tem poglavju premislimo, kako bi v jezik dodali dodali konstruktorje za univerzalne
polimorfne tipe in rekurzivne tipe, ki so zelo mo£ni mehanizmi. Uvedemo spremenljivke
tipa vrednosti α in spremenljivke tipa izra£una β.

198 RAZ�IRJENI POVZETEK V SLOVENSKEM JEZIKU

A,B ::= · · · | µα.A,
C,D ::= · · · | ∀α.C | ∀β.C | µβ.C.

De�nicije izrazov, njihove operacijske semantike in vedenjske logike lahko primerno
raz²irimo, da dobimo naslednji rezultat.

Izrek 7.2.8 in 7.3.7. Naj bo Q razcepna mnoºica listno monotonih drevesno Scottovo
zveznih modalnosti. Tedaj so odprte raz²iritve vedenjskih ²ibkih urejenosti, ki jih do-
bimo iz logik za jezik, raz²irjen z univerzalnimi polimorfnimi tipi in rekurzivnimi tipi,
zdruºljive.

	Introduction
	Foreword
	Technical introduction
	Contributions
	Published papers

	Language and operational semantics
	Effect-free core language
	Adding algebraic effects
	Examples of effects

	Behavioural equivalence
	Design criteria
	Modalities for effects
	Behavioural preorders
	Properties of the preorders
	Equational theories

	Applicative bisimilarity
	Relators
	Applicative simulations
	Relator properties
	Howe's method
	Compatibility results

	Logic variations
	Eliminating computation formula connectives
	Infinitary vs finitary value formula connectives
	Combining effects
	Pure logic
	Logical statements
	Proof rules

	Quantitative logic
	Quantitative predicates
	Examples
	Behavioural preorders
	Applicative Q-simulations
	Variations

	Polymorphic and recursive types
	Adding type constructors
	Universal polymorphic types
	Recursive types
	Thoughts on language extensions

	Conclusions
	Bibliography
	Razširjeni povzetek v slovenskem jeziku

