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1 Motivation

Graphical diagrams of composable models for computer programs, for instance handlers of resources, can be
used to built an intuition of program equivalence. The idea is that one can move around components in the
diagram according to some pre-defined set of intuitive rules, without changing the observed behaviour of the
program it is representing. Hence, by spotting an equivalence between diagrams, one could intuit an equivalence
between the structures it is representing.

A common graphical representation used to this end is that of the string diagram, a topological representation
of higher-order categorical structures [6]. These can describe morphisms in a monoidal category. For instance,
it can illustrate how resources are send from program to program, where the resource is seen as send along a
string. Informally, the monoidal structure of the category ensures that we can move around the strings without
changing the behaviour of the system. If the category moreover is symmetric, we can also cross and braid
strings, as long as the source and target of the strings do not change.

Most string diagrams are fundamentally 2-dimensional. One dimension is often reserved for the direction
of a process: each morphism has a source and a target, an input and an output which can be connected in
various ways. The second dimension can be used for describing simultaneous processes; these are created with
the monoidal product and allows us to lay string next to each other, to cross them, and to split them. With 2
dimensions taken up by composition and parallelisation, it does not leave a lot of room for additional structure
on top.

One solution to representing more complex structures is to use more dimensions. Surface diagrams, as used
for instance in [1, 2], can be used to illustrate sheets with string diagrams drawn on top, moving them across
each other with the power of depth. There is but one inconvenience; if printed on paper, or projected into a pdf,
any 3-dimensional picture is flattened to a 2-dimensional picture. In order to keep all the information of the
3-dimensional model, it is often necessary to use highlights for illustrating things hidden behind other things.
This is quite a powerful technique for visualizing definitions, but can become disorienting very quickly in more
complex structures. How does one draw three complex layers stacked on top of each other?

In this work, one solution is offered, attempting to use features of both worlds. We use a purely 2-dimensional
representation of structures, making sure that every component is either visible or can be inferred from the
surroundings. On top of that, we locally add illustrative flourishes to hint towards a third dimension, thereby
hopefully building some more intuition for what is being represented. This general idea may not be not entirely
new. However, this paper will present a specific example of such a method for projecting multi-dimensional
models onto a 2-dimensional page such that everything fits neatly next to each other, with no information is
lost, whilst still allowing us to imagine the model existing in 3 dimensions.

The particular processes we aim to describe here are natural transformations between endofunctors with
multiple parameters. Such a multi-endofunctor can be used to modify resources, endowing it with additional
structure. As a notable example, notions of computation are often described by a particular type of endofunctor:
a monad [5]. This takes a resource, and transforms it into a set of computation producing such the resource.
When an endofunctor is applied to a resource, we do not have direct access to that resource, as if the endofunctor
creates a barrier between this resource and the outside world. Such structures and proofs about them have
been beautifully illustrated with 2-dimensional string diagrams in [3]. In this work we aim to complement this
representation by allowing an arbitrary number of parallel parameters, e.g. describing parallel programs.

We illustrate endofunctors, which encapsulate resources, using hollow strings or cylinders. In other words,
they are shells which can contain any number of processes, similar to tapes employed in [4]. For example, a
functor can be applied to itself, creating a cylinder within a cylinder. Resources can also be put next to each
other horizontally, illustrating a monoidal product on multi-endofunctors. A natural transformation between
multi-endofunctors is seen as a process between them, and are drawn from top to bottom. We aim to give
some intuition on such natural transformations in the way that the cylinders representing the endofunctors are
connected.
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Importantly, cylinders allow us to switch freely between 2 dimensions and 3 dimensions. In diagrams,
cylinders are flattened with all its contents laid out next to each other, hiding no information. When modifying
cylinders for the illustration of natural transformations, we can locally use the third dimension. As long as
between the operations, we project everything back to the plane, anything temporarily hidden from view can
be inferred from the surroundings. For example, when duplicating a resource, we can illustrate this as peeling
off a copy of an image (like a sticker), and separate the two copies until they are side by side.

The diagrams in this work are built from a set of pre-dawn tiles. These allow us to repeat specific patterns
and keep set distances between components, which should make them easier to interpret. Moreover, tiled
diagrams can be edited using tiling software, for example by copy and pasting parts which easily fit together.
The images created are then edited in post, using colours to distinguish different of structures.

We will give the basis of how to represent natural transformations between multi-endofunctors. Then we
will look at some examples of how they illustrate basic results from the literature, mainly related to monads.

2 Illustrating categories of endofunctors

Consider some symmetric monoidal category C. We aim to visualize the category E of multi-endofunctors on C,
which inherits the symmetric monoidal structure of the underlying category. Since any object of C can be seen
as a constant 0-ary endofunctor, and any morphism of C as a natural transformation between these constant
endofunctors, we can use the visualisation of E to visualise the underlying category C as well. As a start, let us
represent C first, and add higher-order structures later.

Objects of C are illustrated with cylinders, which can be coloured to distinguish between them. Morphisms
in C are given by blocks with an input cylinder and an output cylinder. For instance, a morphism f between
constant functors A and B is represented as: (

f : A
B

)
=

We draw diagrams from top to bottom, in order to ease the readability of domain and codomain expressions
(especially for when bracketing is introduced later on). To match this, we write the type of a morphism with
fraction notation. The top cylinder represents A, and the bottom cylinder represents B. Note that f separates
the two cylinders, which suggests that nothing can pass from the top cylinder to the bottom cylinder.

We can describe the monoidal product of objects in C by laying objects side-by-side. We look at a concrete
morphism; the swap operation for braiding. This takes two arguments and switches their place, and is parametric
in its two arguments. Specifically, we represent the swap operation as(

S : X×Y
Y×X

)
= ,

where we use the suggestive crossing illustration. In this illustration, we see the two cylinders as continuing
uninterrupted. Of course the blue cylinder does stop in the 2d projection, but we imagine it going behind
the other, and it is only hidden during the operation, not before or after. The fact that the cylinders are
uninterrupted suggests that other operations can be dragged across, as illustrated by the following equations:

This is what we mean by naturality. A multi-parameter natural transformation is a family of morphisms
over a tuple of object parameters. Formally, the swap operation is a natural transformation on the bifunctor ×.
Below, we will visualize more general natural transformations, after we introduce general endofunctors. Lastly,
since we assume our monoidal structure on C to be symmetric, we have the usual familiar equations:

Unary endofunctors: A (unary) endofunctor F is drawn using hollow cylinders, which can contain any
object of C within it. The top and the bottom of the cylinder is given a 3-dimensional flourish, but most of the
time it will be projected to the plane, showing only the edge of the cylinder on either side. These two sides can
be seen as the brackets of the functor application, e.g. as seen in F (X), and have a highlights inside which can
be coloured according to functor type. Here we see a functor as applied to objects and morphisms:
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TA = (f : A
B ) = 7→ (Tf : TA

TB ) =

Note that F applied to the identity morphism can be illustrated the same way as the left image above, and
we cannot distinguish between that and the identity morphism on FA. This internalises the identity property
of functors in our graphical representation. Similarly, it is difficult to draw the compositionality property of
functors, but one can try by stacking cylinders:

(∀f : X
Y , g : Y

Z . T g ◦ Tf = T (g ◦ f) : TX
ZY ) = RTX =

In the second image above, we see composition of functors, drawn by layering the cylinders and using different
colours. The identity of functor composition, the identity functor, is often invisible and not drawn.

Single parameter natural transformations: A morphism in E between unary endofunctors T to R is a
single-parameter natural transformation. A generic morphism can be drawn similar to morphisms in C, except
here we have a parameter cylinder going through the operation without interruption. For example, we can have
the following illustration of a natural transformation a, and a morphism of C passing through:

(
∀X. aX : TX

RX

)
= With naturality:

(
∀f : X

Y . aY ◦ Tf = Rf ◦ aX
)

Generalisation to multi-endofunctors: Multi-endofunctors can be represented in a lot of ways, by laying
multiple cylinders side-by-side, connected to each other in some way (or not connected, if they are separated
by a ×). We will not focus on a particular representation here, instead focussing on examples and natural
transformations between them. However, we do need to establish how to deal with multiple parameters.

In order to represent natural transformations between multi-endofuctors, we need to be able to connect up
the parameters in domain with parameters in the codomain in a variety of ways. To do this, we introduce
some extra operations, in the form of natural transformations, which enable us to make full use of this extra
dimension. These can be used to represent natural transformations between n-ary endofunctors. We have
already seen the swap operation. To this repertoire, we add the copy operation C and the delete operation D:

C : X
X×X = D : X

1 =

Copying is illustrated by peeling of a one 2-dimensional duplicate and putting the two copies side by side.
This is a standardized way of duplicating diagrams without having to deal with the 3-dimensional details of
what is being duplicated. Deletion is illustrated by pinching the cylinders to a point. In these notes, we assume
that copy and delete are natural, and that they are subject to the unitality and associativity equations:

These operations can be dualized (put up-side down), creating the comparison co-operation and the gen-
erating co-unit. However, these don’t exist in the category of sets, and we will leave them out here. When
visualising multi-endofunctors, we can glue the cylinders representing the arguments together and mark the
glueing with a symbol. A natural transformation between multi-endofunctors can then be illustrated by con-
necting the parameter cylinders accordingly. For example, we can visualize a bifunctor for coproducts by glueing
two cylinders with a plus-symbol, and use the copy operation to represent a distributivity operation:

(
δX,Y,Z : X×(Y+Z)

(X×Y )+(X×Z)

)
=

This ends the set-up for the graphical representations using cylinder diagrams. In the rest of these notes, we
will look at a variety of example structures which can be represented as natural transformations between multi-
endofunctors, to illustrate the versatility of the diagrams. We will be much less verbose, letting the illustrations
speak for themselves. To keep it within a theme, we will focus on constructions related to monads.
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Example 1: Strong monads

Strength of a functor is a way of pulling an extra resource into the shell of a functor. We illustrate this by
piercing a hole in the functor-cylinder and leading through some parameter-cylinder:(

σX,Y : X×TY
T (X×Y )

)
=

A functor is strong if it has a natural transformation like the one above, which satisfies the following
additional equations, telling us that if nothing (meaning 1) goes through the hole we can remove it σ1,X ≃ idTX ,
and that we can combine holes σX,Y×Z ◦ (idX × σY,Z) ≃ σX×Y,Z .

Definition 1. A monad is a functor T = with two natural transformations
(
ηX : X

TX

)
= and

(
µX : TTX

TX

)
= , satisfying the following two equations:

(Left-unit) (Right-unit) (Associativity)

A strong monad moreover satisfies the following equations:

Using swap , we define costrength as
(
τX,Y : TX×Y

T (X×Y )

)
= .

Lemma 1. A strong monad is a costrong monad (they satisfy the equations for being a strong monad from
Definition 1, but replacing strength with costrength).

Proof.
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Example 2: Commutative monads

Definition 2. A monad is commutative if the following equation holds:

Definition 3. T is a monoidal monad if there is a natural transformation
(
m : TX×TY

T (X×Y )

)
= satisfying

the following two equations:

(η) (µ)

Lemma 2. Any strong commutative monad is a monoidal monad.

Proof. We define the following natural transformation:
(
m : TX×TY

T (X×Y )

)
= . Using com-

mutativity, we can prove both monoidal monad properties:

(η)

(µ)
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Example 3: Products of monads

Given two functors T and R, we can take their product

(T ×R)(X) = (TX ×RX) = .

We will illustrate that, if T and R are both monads and copy and delete are natural transformations, then
T ×R is a monad. In this case, since we use two different functors in various combinations, we will colour the
functor cylinders for ease of understanding. We define the two natural transformations:

� The monad unit
(
ηT×R
X : X

TX×RX

)
= .

� The monad multiplication
(
µT×R
X : T (TX×RX)×R(TX×RX)

TX×RX

)
=

We show the three equations:

�

�

�
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Example 4: Skew monoidal products from monads

Let T be some endofunctor, we define a binary operation × on endofunctors as the bifunctor:

(X ⊗ Y ) = TX × Y = .

It holds that this bifunctor forms a skew monoidal product in the sense of Szlachányi 2012 [7] if and only if
the functor T is a monad. We show this in one direction: supposing T is a monad, we create a skew monoidal
structure on ⊗. Using copy and delete, we can define comonoidal co-operation on T as:

As unit, we use the constant endofunctor on the unit 1 of C, which is itself the unit of the product on end-
ofunctors. Normally, we would remove such units from our picture. But to clarify the connection with skew
monoidal categories, we include them in the formulation of the skew monoidal structure as light grey cylinders.
New units can be introduced and glued to existing units freely.

� Let skewed associativity be
(
α : (X⊗Y )⊗Z

X⊗(Y⊗Z)

)
= , using the co-operation and multiplication.

� Let skewed left-unitality be
(
λ : 1⊗X

X

)
= .

� Let skewed right-unitality be
(
ρ : X

X⊗1

)
= .

We show the five coherence equations.

(1) (2)

(3) (4)

(pentagon equation)
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3 Final thoughts

The images in this work have been generated using image tiling software, using images from the following two
tilesets, respectively containing 8 by 18 tiles with 32x32 pixels, and 4 by 8 tiles with 32x16 pixels:

Most pictures are build in three layers onto a white background, where the green in the tilesets marks transparent
areas in the tiles. First two layers use the first tileset, consisting of a base layer and an extra layer for overlaying
other components as for instance done in swapping and copying. The third layer is used for additional 3-
dimensional flourish, mostly at the top and bottom of the diagrams. After tiling, the images undergo some
post-editing, which mostly involves the colouring of components and some minimal rescaling of components.

This work was inspired by the need to visualise dependencies of parallel processes. Though it did not fit
within the scope of this short paper, the diagrams can be used to represent natural transformations describing
concurrent interleaving processes and program-environment interaction laws. Categorical properties of such
operation tend to be quite abstract and require some effort to interpret. Hopefully, the method for visualisa-
tions presented here will be a helpful aid for building intuition about these concepts, representing unevaluated
computations as barriers which need to be scheduled or handled.

Similar ways of representing similar concepts have appeared throughout the literature. However, this specific
way of using cylinders which canonically shift between 2D and 3D, and in particular using tiles to build them,
is believed to be novel. This final way of representing natural transformations was influenced by discussions
with other researchers. Thanks to Ed Morehouse for his explanation and illustrations of 3-dimensional surface
diagrams for representing natural transformations, and Cole Comfort for some of his applications surface dia-
grams. Thanks to Pawel Sobocinski, who had been working on a similar, yet unpublished, visualisation style
called ribbon semantics. And thanks to others for helpful suggestions and feedback, including but not limited
too; Mario Roman, Elena Di Lavore, Chad Nester and Philipp Joram.
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