
Runners for Interleaving Algebraic E�ects

Niels F.W. Voorneveld⋆[0000−0001−6650−3493]

Tallinn University of Technology, niels@cs.ioc.ee

Abstract. We study a model of interleaving concurrency for higher-
order functional programs with algebraic e�ects, which can function as a
basis for notions of behavioural equivalence of e�ectful programs within
concurrent processes. Using the category of relations to describe nonde-
terministic functions, we model runs of programs using trace semantics.
These traces have actions describing possible program-environment in-
teractions. The functor of traces forms both a monad and a comonad in
the category of relations, allowing us to describe programs as both active
computations and passive background processes.
We adapt traditional concurrent interleaving semantics for traces as an
operation in the category of relations, merging two traces into a set of
interwoven traces. These semantics give rise to a runner for the monad,
and in some cases form a monad-comonad interaction law. With this, we
can simulate an environment of concurrent background processes, and
describe the behaviour of a program within such an environment. This
runner for interleaving concurrency is readily composable with runners
for algebraic e�ects, allowing us to describe a wide variety of di�erent
concurrent e�ectful scenarios.

Keywords: Algebraic E�ects · Interleaving Concurrency · Stateful Run-
ners · Trace Semantics · Program Equivalence.

1 Introduction

Programs are rarely run in isolation. They are executed in a speci�c environment,
using its resources and communicating to it. In the mean time, other programs
may be executed in the same environment. How do programs behave in such
circumstances where any line of communication with its environment may be
interfered with by other background processes? In this paper, we aim to develop a
model for describing the behaviour of higher-order functional e�ectful languages
with such interfering background processes.

Interleaving Algebraic E�ects. We study in particular programs with alge-
braic e�ects [23]. These express interactions with the environment in terms of
algebraic operations. Each operation is a line of communication with the environ-
ment, awaiting a response from the environment and containing a continuation

⋆ Supported by the ESF funded Estonian IT Academy research measure (project 2014-
2020.4.05.19-0001).



2 N.F.W. Voorneveld

for each possible response. Programs are denoted by combinations of nested
operations, which form elements in a monad of inductively generated trees [22].

The evaluation of such programs can be modelled by stateful runners [29],
which consult a global state for handling the operations [24]. This gives us a way
to �nd the result of a program, dependent on the initial state of the environment.
These runners induce an algebraic theory of equations, relating trees when they
are resolved in the same way in each possible state of the environment.

Complications arise when multiple e�ectful programs run in parallel, since the
state of the environment may be changed in unpredictable ways. We investigate
such situations using interleaving concurrency, which has been widely studied
in di�erent areas of computer science, including, but not limited to, labelled
transition systems [14], bisimulation [21], and Petri nets [6].

We can apply traditional interleaving semantics, as studied in communication
processes [5,4] and actor semantics [7], to our denotational trees. We work in
the category of relations Rel (e.g. see [17]) and its subcategory of total relations
Rel+, which allow us to express nondeterministic functions. In both categories,
we can transform our trees into collections of traces describing the branches of
the tree, following ideas from trace semantics [12,28]. These traces will consist of
a list of actions followed by either a result, or an exception. These exceptions are
only included if there are nullary operations in the signature of e�ect operations,
for instance an exception labelled � for describing divergence.

The interleaving semantics gives a merge operator [25] on the monad of traces
T, merging two traces into a set of �merged� traces. This merge function, called
the parallel operator, satis�es a variety of properties, like symmetry and asso-
ciativity. It gives a binatural transformation if either there are no errors, or we
limit ourselves to Rel+. The parallel operator is however not preserved over
program composition, which is necessary for the speci�cation of a congruent
program equivalence for functional languages. In order to establish preservation
over program composition, we need to investigate a di�erent perspective.

Congruent Program Equivalences. Program equivalences for programming
languages are studied to answer the question: When can a program safely be
replaced by another, without it a�ecting the behaviour of the entire system? A
program equivalence is a relation on programs, which should provide a su�cient
condition for guaranteeing this �safe replacement�. Program equivalences with
this feature are commonly called congruences.

Relators [16,27] are a common tool for de�ning notions of program equiva-
lence. They lift relations on return values to relations on denotations of programs
returning those values, following certain considerations of behaviour. They can
be used to de�ne a congruent notion of applicative bisimilarity [1] for e�ectful
programs, as seen in paper [15]. Motivated by these applications, we use stateful
runners to de�ne relators with the right properties. Particularly, we need such
relators to be preserved over program composition.

In order to recover preservation over program composition, we use a variant
semantics of the parallel operator using strongly focussed parallel operators. This



Runners for Interleaving Algebraic E�ects 3

variant parallel operator nondeterministically chooses which program to focus
on, whereafter that chosen program has to perform the next step. If that chosen
program is done, the parallel operator is done, regardless of the state of the
program we are currently not focussing on.

This models the situation where one program takes the lead, and the second
program is considered as a background process, as part of the environment. To
accommodate this shift in perspective, we use the interesting fact that the monad
of traces T also forms a comonad in the category of relations, and comonads are
commonly used to model notions of environment [30]. This construction is similar
to the treatment of the exponential modality in linear logic as used in [8,9,20].

Contributions. One of the main contributions of this paper is the discovery
that the focussed parallel operator satis�es the equations required by T-residual
monad-comonad interaction laws [13] between T as a monad, and T as a comonad.
If we leave out exceptions, this operation forms an interaction law in Rel. Re-
gardless of the inclusion of exceptions, the operation induces a stateful runner
which we call the parallel runner in the category of total relations Rel+, where
the denotation of the second program is part of the state of the environment.

Combining the parallel runner with runners for modelling algebraic e�ects,
we get a runner for modelling e�ectful programs within environments of other
e�ectful programs running in the background. The parallel runner implements
a program context with a background process, e.g. Run P during Q where Q
is considered as being run in the background. Importantly, Q is not necessarily
evaluated completely, as it may continue to be evaluated after P is done.

The big motivation for this perspective is that runners readily specify relators
with the right properties for inducing congruent notions of program equivalence
for functional languages such as the untyped lambda calculus, following results
from [15]. The �nal contribution is the development of state-dependent instances
of such relators, which gives rise to a notion of equivalence dependent on the
initial state of the environment, and which moreover allows for �ne-tuning what
aspects of the environment state are externally observable. Hence they are a
powerful tool for verifying safety of e�ectful programs that are evaluated in
parallel with other programs.

Paper Overview. We assume the reader is familiar with basic concepts from
category theory, including but not limited to; natural transformations, monads
and monoidal products. In Section 2 we look at the category of relations, and
properties of tree monads used for modelling programs. In Section 3, we con-
sider stateful runners on trees, and how to describe trees as collections of traces.
Then, in Section 4, we study a variation on the interleaving concurrent opera-
tion, as an operation in the category of relations. Combining the above, we can
construct runners for a variety of algebraic e�ects in concurrent environments,
and we study how they induce state-dependent relators in Section 5 suitable for
formulating program equivalences. We make some �nal observations in Section 6.



4 N.F.W. Voorneveld

2 The Category of Total Relations

We will give a brief overview of some of the categorical concepts used in this
paper. We use the category of relations Rel as a basis, which has as objects sets,
and as morphisms relations between them. The space of morphisms from X to
Y is denoted by X −○Y , and contains relations R relating elements from X to
elements from Y . Such a relation can be given multiple representations:

1. a relation is a subset of X × Y . This is used mainly in relational reasoning.
2. a relation is a set-theoretic function from X to the powerset P(Y ), called a

nondeterministic function. This is a common model for nondeterminism.

We write xR y to say R relates x to y, and R(x) for the set {y ∈ Y ∣ xR y} ∈
P(Y ). The identity relation on X is denoted as IX , where xIXx′ if x = x′, and
relation composition as R;S, where xR;S z if there is a y such that xR y and
y S z. We write ι for the identity natural transformation, where ιX = IX .

We focus on two important properties a relation can have, which are satis�ed
by the identity relation, and preserved under composition.

� R ∶X −○Y is total if for any x ∈X, there is a y ∈ Y such that xR y. In other
words, for any x ∈X, R(x) is non-empty.

� R ∶ X −○Y is thin if for any x ∈ X and y, y′ ∈ Y , if xR y and xR y′, then
y = y′. In other words, for any x ∈X, R(x) has at most on element.

Set-theoretic functions f ∶X → Y can be represented by total and thin relations
between X and Y . This makes the category of sets Set the wide subcategory of
Rel of total and thin relations. We denote the set of total relations from X to
Y as X −+Y , and consider the wide subcategory of Rel of total relations Rel+.
Moreover, Rel, Rel+ are the Kleisli categories over respectively the powerset
monad P, and the non-empty powerset monad P+ in Set.

The Cartesian product × in Set can be lifted to a symmetric monoidal prod-
uct in Rel, which sends sets X and Y to their Cartesian product X × Y ,
and relations R ∶ X −○X ′ and S ∶ Y −○Y ′ to (R × S) ∶ X × Y −○X ′ × Y ′,
where (x, y) (R × S) (x′, y′) if xRx′ and y S y′. Since it preserves totality, it
also forms a symmetric monoidal product in Rel+. We write γ for symmetry
γX,Y ∶X×Y −○Y ×X, and α for associativity αX,Y,Z ∶ (X×Y )×Z −○X×(Y ×X).

The category Rel has a dagger operation (−)� which sends morphisms R ∶
X −○Y to R� ∶ Y −○X de�ned as: yR� x if and only if xR y. This satis�es the
properties (IX)� = IX , (R;S)� = S�;R�, and ((R)�)� = R. The dagger operation
does not preserve totality or thinness, hence does not exist in Set and Rel+.

We work in Rel and Rel+, since it internalises the nondeterminism and we
do not need keep track of the powerset monad P when composing functions.
Instead, we need to check that the operations we de�ne are natural.

Let 1 be the singleton set {∗}. Consider two families of relations, dX ∶X −○1
and cX ∶X −○X×X ranging over a setX, where xdX ∗ and xcX (y, z) if x = y = z.
Considered as functions, these respectively delete and copy elements. However,
neither of the two are natural transformations in Rel. Speci�cally, dX is only



Runners for Interleaving Algebraic E�ects 5

natural on total relations, hence natural in Set and Rel+, but not Rel, and cX
is only natural on thin relations, hence natural in Set but not Rel and Rel+.

SoRel is particularly restrictive in what it allows as natural transformations,
since we can neither delete nor copy. Rel+ however does allow us to delete and
trim data. Though we will do most constructions in Rel, we shall keep track of
those structures which are natural in Rel+. We call a transformation positively
natural if it is natural with respect to total relations. If a transformation is both
positively natural and total, it is a natural transformation in Rel+.

2.1 Trees as Monads and Comonads

We can de�ne inductive data structures using containers to describe signatures
of algebraic e�ect operations. A container S is a pair (O,ar) given by a set O
of operations together with a function ar ∶ O → Set associating an arity to each
operation. We consider several examples of operations.

� We can model printing a message m on screen with an operation output(m)
of arity 1 = {∗}. Each separate message has a separate operation.

� We can model reading an input from a user with an operation input whose
arity has all possible responses the user can make.

� We can raise an exception or error using an operation error(m) of arity 0.
� We can model a choice (e.g. nondeterministic) with an operation of arity 2.

Given a container S, denote programs using such programs with S-trees.

De�nition 1. Given a container S = (O,ar), the endofunctor in Rel of S-trees
sends a set X to the set of trees MSX inductively de�ned by:

� leaf(x) ∈ MSX for any x ∈X.

� node(o)(c) for any o ∈ O and c ∶ ar(o) → MSX.

and it sends a relation R ∶X −○Y to MS(R) ∶ MSX −○MSY , de�ned as:

� leaf(x)MS(R) leaf(y) for any x ∈X and y ∈ Y such that xR y.
� node(o)(c)MS(R)node(o)(d) for any o ∈ O, c ∶ ar(o) → MSX and d ∶ ar(o) →

MSY , such that ∀i ∈ ar(o). c(i)MS(R)d(i).

MSX as an endofunctor in Set is actually the free monad over the functor
FSX = Σo∈O(Xar(o)). Hence MS in Rel can be seen as a lifting of that free monad
to the Kleisli category of P, using a distributivity law of the free monad over P.

MS is a monad in Rel, since we can lift the monad structure from Set.
The unit transformation ηSX ∶X −○MSX is de�ned as ηSX(x) = {leaf(x)}, and the
multiplication relation µS

X ∶ MSMSX −○MSX is inductively de�ned as µS
X(leaf(t)) =

{t} and µS
X(node(o)(c)) = {node(o)(e) ∈ MSX ∣ ∀i ∈ ar(o), e(i) ∈ µS

X(c(i))}.
Both are natural transformations consisting solely of total and thin relations,
which re�ects the fact that they were lifted from the monad structure in Set.



6 N.F.W. Voorneveld

Lemma 1. Suppose (M,η,µ) is a monad in Rel with the additional property
that for any relation R ∶ X −○Y , (M(R))� = M(R�), then (M,η�, µ�) is a
comonad in Rel.

Indeed, MS satis�es the property required in Lemma 1, so (MS , (ηS)�, (µS)�)
is a comonad. We give an alternative inductive de�nition for the comonadic
operations. Let εSX ∶ MSX −○X and δSX ∶ MSX −○MSMSX be inductively de�ned as:

� εSX(leaf(x)) = {x}, and εSX(node(o)(c)) = ∅.
� δSX(leaf(x)) = {leaf(leaf(x))}, and δSX(node(o)(c)) = {leaf(node(o)(c))} ∪
{node(o)(d) ∣ ∀i ∈ ar(o). c(i) δSX d(i)}.

Lemma 2. εSX = (ηSX)� and δSX = (µS
X)�, hence (MS , εS , δS) is a comonad.

Now, ε is not total, hence it is not an operation in Rel+ and Set, though it
is a natural transformation in Rel. On the other hand, δ is not thin, hence it is
not an operation in Set, though it is a natural transformation in both Rel and
Rel+. Let us look at some additional properties which are satis�ed:

Lemma 3. The following four equations hold:

� ηS ; εS = ι, δS ;µS = ι(MS), µS ; εS = εS(εS), and ηS ; δS = ηS(ηS).

2.2 The Occasional Strength of Trees

Strength is an important property for monads when modelling programming lan-
guages. For example, it allows us to schedule the order of evaluation of programs.
To de�ne strength, consider the family of relations σS

X,Y ∶X ×MSY −○MS(X ×Y )
over two set parameters X and Y , de�ned inductively as:

� σS
X,Y (x, leaf(y)) = {leaf(x, y)}.

� σS
X,Y (x,node(o)(c)) = {node(o)(d) ∣ ∀i ∈ ar(o). d(i) ∈ σX,Y (x, c(i))}.

This is lifting the natural operation for strength of MS as an endofunctor in Set,
to a family of total and thin relations in Rel. This family is natural in Y , but
not necessarily natural in X, due to previous observations related to copying
and deleting. If the signature S = (O,ar) has an operation o ∈ O such that the
set ar(o) has more than one element, then σS is able to copy X. If the signature
S = (O,ar) has an operation o ∈ O such that the set ar(o) = ∅, then σS is able
to delete X. As a consequence, we have the following consequences:

1. σS is natural in Rel if and only if for each o ∈ O, ∣ar(o)∣ = 1.
2. σS is natural in Rel+ if and only if for each o ∈ O, ∣ar(o)∣ ≤ 1.
3. σS is natural in Set, regardless of the signature.

Because of the above, we consider the following subclass of tree monads:

De�nition 2. Given sets A and E, which we respectively call actions and excep-
tions, we de�ne the monad of (A,E)-traces as the monad of trees over the signa-
ture (A+E,ar), where ar(inl(a)) = {∗} for any a ∈ A (unary) and ar(inr(e)) = ∅
for any e ∈ E (nullary). We denote this monad as (TA,E , η

A,E , µA,E).



Runners for Interleaving Algebraic E�ects 7

Wemay write (a)t or◯a t for node(inl(a))(t), and ⟨e⟩ or◇e for node(inr(e))().
Lastly, we may write [x] for leaf(x), hence using a di�erent bracket type for each
of the three possible constructors of the monad. Given a set X, the set TA,EX
is isomorphic to A∗ × (X +E), where A∗ is the set of lists over A. For example,
the maybe monad can be given by T∅,{�}. For any A and E, TA,E is a strong
monad in Rel+, and for any A, TA,∅ is a strong monad and a comonad in Rel.

Lemma 4. For any signature S, and sets X and Y ,

� (ηSX × ιY );σS
X,Y = ηSX×Y and (µS

X × ιY );σS
X,Y = σS

MSX,Y ;MS(σX,Y );µX×Y .

� σS
X,Y ; ε

S
X×Y = εSX × ιY and (δSX × ιSY );σS

MSX,Y ;MS(σS
X,Y ) = σS

X,Y ; δ
S
X×Y .

We leave out subscripts and superscripts when they are obvious from context.

3 Nondeterministic Stateful Trace Runners

We model the behaviour of e�ectful programs by resolving algebraic e�ect oper-
ations by consulting some environmental state. This is done by stateful runners
in the category of total relations Rel+. We shall �rst look at runners for trace
monads, whereafter we shall see how they can be extended to runners on tree
monads as well. Firstly, we look at runners in general, as they appear in [29,13].

De�nition 3. Given a monoidal closed category with monads M and N , an
N -residual runner on M is given by an object K and a natural transformation
θX ∶MX ×K → N(X ×K) such that:

X ×K
ηM
X ×K ��

ηN
X×K

((
MX ×K

θX

// N(X ×K)

MMX ×K θMX//

µM
X ×K ��

N(MX ×K)
N(θX)// NN(X ×K)

µN
X×K��

MX ×K
θX

// N(X ×K)

For instance, if M is a strong monad, then for each object K the strength
transformation σ (with symmetry) forms an M -residual runner on M .

De�nition 4. Given sets A,E,A′,E′, a trace runner from (A,E) to (A′,E′) is
a TA′,E′-residual runner on TA,E in Rel+.

Lemma 5. Trace runners from (A,E) to (A′,E′) are in 1-to-1 correspondence
with triples consisting of a set K and two morphisms:

� a morphism A ×K −+TA′,E′K (or A ×K −+A′∗ × (K +E′)),
� a morphism E ×K −+TA′,E′0 (or E ×K −+A′∗ ×E′).

Proof. Given f ∶ A×K −+TA′,E′K and g ∶ E ×K −+TA′,E′0 we inductively de�ne
θX ∶ TA,EX ×K −+TA′,E′(X ×K) as:

θX([x], k) = [x, k], θX(◯a (t), k) = (TA′,E′(λv.θX(t, v));µA′,E′)(f(a, k)),
θX(◇e , k) = TA′,E′()(g(e, k)).

Vice versa, given θX ∶ TA,EX×K −+TA′,E′(X×K), we de�ne f ∶ A×K −+TA′,E′K
as λ(a, k).θ1(◯a [∗], k) using the isomorphism 1 × K ≃ K, and we de�ne g ∶
E ×K −+TA′,E′0 as λ(e, k).θ0(◇e , k) using the isomorphism 0 ×K ≃ 0.



8 N.F.W. Voorneveld

We call the morphisms from Lemma 5 the local functions for the runner. In
Rel, a runner can never raise an error when resolving an action. This severely
restricts the examples we can model, and hence we focus on runners in Rel+.

Following the theory on runners [29], we can compose them in the following
way. Given a trace runner θ from (A1,E1) to (A2,E2) on state space K1, and a
trace runner ϕ from (A2,E2) from (A3,E3) on state space K2, we can compose
them into a trace runner θ ●ϕ from (A1,E1) to (A3,E3) on state space K1×K2,
given by (θ●ϕ)X = (θX×ιK2);ϕX×K1 ∶ TA1,E1X×K1×K2 −+TA3,E3(X×K1×K2),
using associativity of ×.

3.1 The Monad Morphism of Branches

Let us consider runners on trees as well.

De�nition 5. Given a container S and sets A and E, a tree runner from S to
(A,E) is a TA,E-residual runner on MS in Rel+.

We can use trace runners to de�ne runners on trees. This is done by de�ning
an operation which takes a tree MSX, and collects all the branches of the tree.
We de�ne the set of S-actions as the set A(S) = {(o, i) ∣ o ∈ O, i ∈ ar(o)}, and
the set of S-errors as E(S) = {o ∈ O ∣ ar(o) = ∅}. The action (o, i) signi�es
the operation o being called, and the response i being given to the operation.
Consider the family of operations βS

X ∶ MSX −○TA(S),E(S)X, de�ned by

� βS
X(leaf(x)) = {leaf(x)},

� βS
X(node(o)(c)) = {(o, i)(t) ∣ i ∈ ar(o), t ∈ βS

X(c(i))} if ar(o) is non-empty,
� βS

X(node(o)(c)) = {⟨o⟩} if ar(o) is empty.

If S has any arity with more than one element, βS
X is not natural in Rel.

However, βS
X is both total and natural in Rel+.

Lemma 6. In Rel+, β
S forms a monad morphism from MS to TA(S),E(S).

As a direct consequence, we can transform a trace runner from (A(S),E(S))
to (A′,E′), to a tree runner from S to (A′,E′).

3.2 Examples

We consider some examples using the maybe monad T∅,{�} = (−)� as residual.
In each case, we specify the signature S, and de�ne the runner on TA(S),E(S) by
specifying its local functions (see Lemma 5).

Example 1. Consider a set of messages M , and for each m ∈M an output oper-
ation output(m) of arity 1. In this case, A(S) = {(output(m),∗) ∣m ∈M} ≃M
and E(S) = ∅. A simple trace runner to consider is one that records all the
outputs in a single list. We take as state space K =M∗, and de�ne the runner
with the local function f ∶M ×M∗ −+(M∗)� using append f(m,τ) = {m ∶ τ}.



Runners for Interleaving Algebraic E�ects 9

Example 2. Consider a signature with a single input operation input of arityM ,
giving us A(S) = {(input,m) ∣m ∈M} ≃M and E(S) = ∅. The runner consults
some oracle of inputs, and veri�es that the right response is made. As state space,
we use MN, and the runner is given by the local function f ∶M ×MN −+(MN)�
where: f(m,s) = {λn.s(n + 1)} if s(0) =m, and {�} otherwise.

Example 3. We model global store over some global state M by taking as op-
erations: for each m ∈ M an operation update(m) of arity 1, and an op-
eration lookup of arity M . We simplify A(S) = {m!,m? ∣ m ∈ M} where
m! = (update(m),∗) and m? = (lookup,m). We de�ne a runner over state
space M with the local function f ∶ A(S)×M −+M� where: f(m!, n) = {m}, and
f(m?, n) = {n} if m = n, otherwise {�}.

Example 4. Consider a single choice operation or of arity 2 = {0,1}, hence our
actions A(S) are in bijection to 2. Suppose or models some unbalanced nonde-
terministic choice, where the right choice only happens when some fee is paid,
whereas the left choice is free. As state space we take N, which tells us how
many times we can pay the fee, and de�ne the runner with the local function
f ∶ 2 ×N−+N� where f(0, n) = {n}, f(1,0) = {�} and f(1, n + 1) = {n}.

4 Interleaving Concurrency

Having established our main way of modelling e�ect behaviour in terms of run-
ners, we now start looking at interleaving concurrency. We study a variation
on the standard interleaving semantics, and use it to formulate a trace runners.
This variation is necessary to ensure that the right properties hold, especially
the unit equation for trace runners.

De�nition 6. The interleaving concurrency operations are three mutually in-
ductive families of operations P,L,R ∶ TX × TY −○T(X × Y ) where:

1. P(l, r) = L(l, r) ∪R(l, r).
2. L([x], r) = [x, ε(r)].
3. L(◯a l, r) =◯a P(l, r).

4. L(◇e , r) =◇e .
5. R(l, r) = T(γ)(L(r, l)).

We call L the left-focussed parallel operator, and R the right-focussed paral-
lel operator. The main di�erence between the above semantics and traditional
interleaving semantics (as e.g. in process algebra [4]) is in the treatment of the
termination case. Here, L([x], r) will only give a result if r immediately termi-
nates as well (is a leaf). If not, L([x], r) = ∅. More traditionally, L([x], r) is
taken to be σX,Y (x, r). Despite this, we do have the following result:

Lemma 7. The following equation holds: P([x], r) = σ(x, r).

As a direct consequence, the map P does not change if we change the de�nition of
L to give L([x], r) = σ(x, r) instead of L([x], r) = [x, ε(r)]. We keep the formula-
tion from De�nition 7 for the following two reasons: 1) The left parallel operator



10 N.F.W. Voorneveld

L has a richer structure which allow us to formulate trace runners, and 2) this
gives less duplicate results which makes it less cumbersome in formalisation ef-
forts (less cases in set equality proofs). We make the following observations.

� P is total, L and R are not total if there is at least one action or exception.
� P, L and R are positively natural over X and Y , hence P is natural in Rel+.
� If E is empty, then P, L and R are natural in Rel.

Lemma 8. P is associative and symmetric, as it satis�es the equations:

� (P × ι);P;T(α) = α; (ι × P);P,
� (L × ι);L;T(α) = α; (ι × P);L,
� (R × ι);L;T(α) = α; (ι ×L);R,
� (P × ι);R;T(α) = α; (ι ×R);R.

� P;T(γ) = γ;P.
� L;T(γ) = γ;R.
� R;T(γ) = γ;L.

4.1 Monadic and Comonadic Properties

We will study how the interleaving transformations interact with both the monad
and comonad structure of our monad T. First of all, consider the following.

Lemma 9. The following equation and point-wise inclusion hold:

X × Y
η×η ○

X × Y
η○

TX × TY
P
○T(X × Y )

TTX × TTY
∣ ⋂

P
○

µ×µ ○

T(TX × TY ) TP○TT(X × Y )
µ○

TX × TY
P

○T(X × Y )

This shows that T is a monoidal monad in Rel+ in a lax sense. In relation to the
comonad structure however, there is a stronger result.

Lemma 10. The following two equations hold:

TX × TY
ε×ε ○

P
○T(X × Y )

ε○
X × Y X × Y

TX × TY P
○

δ×δ ○

T(X × Y )
δ○

TTX × TTY
P
○T(TX × TY )

TP
○TT(X × Y )

We could call T a monoidal comonad, though note that ε is not total. Hence
T is only a monoidal comonad in Rel and only when E = ∅. Last but not least,
we present equations which mix the monad and comonad structures.

Lemma 11. The following two equations hold:

X×Y X×Y
η
○

X×TY
ι×ε○

η×ι
○
TX×TY

L
○T(X×Y )

TTX×TTY L
○T(TX×TY )TL○TT(X×Y )

µ
○

TTX×TY
ι×δ○

µ×ι○
TX×TY

L
○T(X×Y )

Proof (Notes). The second equation can be shown by mutual induction with
properties: 3. P(µ(d), r) = µ(TL(P(d, δ(r)))), 4a. R(µ(d), r) ⊆ µ(TL(P(d, δ(r)))),
and 4b. P(µ(d), r) ⊇ µ(TL(R(d, δ(r)))). Property 3 can be directly shown using
the other three properties, whereas those other properties can be proven by case
analysis on the trace they focus on, using the induction hypothesis on property 3.



Runners for Interleaving Algebraic E�ects 11

The above result shows a strict preservation over program composition, and
as a direct consequence, we can observe a connection to interaction laws [13].

Corollary 1. If E = ∅, then in the category of relations Rel, L forms a T-
residual monad-comonad interaction law between T and T.

4.2 The Parallel Runner

Following Lemma 11 and the theory developed in [13], we know that the following
construction gives us a trace runner.

De�nition 7. For a set U and a trace monad T, the U -parallel runner is the
trace runner ρUX ∶ TX × TU −+T(X × TU) de�ned by ρUX = (ιTX × δU);L.

This runner simulates running a program modelled by a set of traces from
TX in parallel with some background process modelled by a set of traces from
TU . This background process need not �nish when the program �nishes, and a
remainder of its trace may carry over to continuations of the program.

The parallel runner goes hand in hand with the left-focussed parallel trans-
formation L, since the former is de�ned by the latter, and the latter can be
retrieved from the former: L(l, r) = T(ι × ε)(ρ(l, r)). Through Lemma 5, we can
�nd the local de�nition of the parallel runner, given as follows:

� The morphism A ×K −+TK, where K = TY , sends (a, r) to (a)δU(r).
� The morphism E ×K −+T0 sends (e, r) to ⟨e⟩.

As a culmination of previous results, we can observe some extra properties.

Lemma 12. The following two equations hold, modulo associativity:

� (ρYX × ιTZ);ρZX×TY ;T(ιX × γTY,TZ) = (ιTX × γTY,TZ); (ρZX × ιTY );ρYX×TZ ,
� (ρYX × ιTZ);ρZX×TY ;T(ιX × PY,Z) = (ιTX × PY,Z);ρ(Y ×Z)X .

De�nition 8. The U -concurrent completion of a trace runner θ from (A,E)
to (A′,E′) on state space K is the trace runner θ∣U from (A,E) to (A′,E′) on
state space TA,EU ×K given by the composition (ρU ● θ).

We commonly take the 1-concurrent completion of a trace runner, since our
focus is on the program and not on the result of the background process. If we
want to study the background process instead, we would shift focus and use the
runner the other way around. Note that by Lemma 12, taking two concurrent
completions is similar to taking one. In other words, running in parallel with
two processes separately is, from the perspective of the program, the same as
running in parallel with the merger of the two processes together.

5 Stateful Relational Reasoning

Consider a tree runner from S to (A,E). This runner induces a relation on
trees over the signature S. In this section, we shall formulate such relations
dependent on the state of the environment, and look at examples of such relations
in scenarios of algebraic e�ects with concurrency.



12 N.F.W. Voorneveld

5.1 Relators

When one wants to study the behaviour of programs denoted by a monadM , one
may need tools to relate them. Given some notion of relatedness on values as a
relation between two objects X and Y , we want to de�ne a notion of relatedness
between programs that produce these values; a relation between MX and MY .
This can be done using a relator [16,27].

De�nition 9. Given a monad M in Set, a relator Γ for M is a family of
functions {ΓX,Y }X,Y sending R ⊆X × Y to ΓX,Y (R) ⊆MX ×MY such that:

Identity: IMX ⊆ ΓX,X(IX).
Composability: Γ (S);Γ (R) ⊆ Γ (S;R).
Order preservation: If R ⊆ S, then Γ (R) ⊆ Γ (S).
Naturality: For f ∶ X → Z and g ∶ Y → W , M(f)(a)Γ (R)M(g)(b) holds if

and only if aΓ ({(x, y) ∣ f(x)R g(y)}) b.
The lifting of M to Rel is an example of a relator, though the main examples

we study in this paper are not of that form. There are two properties we would
like a relator to satisfy in order for it to induce a congruent notion of equivalence.

De�nition 10. A relator Γ on a monad M is monadic if:

Unit: If xR y then ηMX (x)Γ (R)ηMY (y).
Multiplication: If dΓ (Γ (R)) e then µM

X (d)Γ (R)µM
Y (e).

We shall focus on relators on tree monads (which include trace monads).
In particular, the examples we have studied were formulated by runners to the
exception monad T∅,EX ≃X +E. As such, we shall �rst look at relators there.

Example 5. Specifying a subset V ⊆ E of detectable errors, we can de�ne a
relator ΓV on T∅,E given by:

� [x]ΓV (R) [y] if xR y, ◇e ΓV (R)◇e , ◇e ΓV (R) t for any t if e ∉ V .

A common sub-example is to take E = {�} and V = ∅, in which case we get
the standard relator Γ{�} on the maybe monad. This makes the � exception not
observable by the relator, which is useful in such cases where we model programs
with undecidable termination, and non-termination is marked by �.

To deal with nondeterminism, we use a relator from the literature (e.g. [15]).

De�nition 11. We de�ne a monadic relator P+ on the monad P+(−), where:
V P+(R)W if for any x ∈ V , there is a y ∈W such that xR y.

A tree runner from S to (A,E) gives an P+TA,E-residual runner on MS in
Set. Hence it gives a natural transformation θX ∶ MSX ×K → P+TA,E(X ×K).
We shall use this runner to de�ne a relator on MS . As base, we shall specify a
relator Γ on TA,E , and compose it with the relator P+ on P+, creating a relator
on P+TA,E which we denote by ΓP+ . In order for ΓP+ to be monadic, we need the
following distributivity property on Γ using a distributivity law1 d ∶ TP+ → P+T:
1 A distributivity law satis�es some equations with respect to the monad structure,
as speci�ed in [3].



Runners for Interleaving Algebraic E�ects 13

P+-Distributivity: If t Γ (P+(R)) r then dX(t)P+(Γ (R))dY (r).
Example 5 satis�es the distributivity property, and the proof of this necessar-

ily uses the fact that P+X does not include the empty set. The following relator
is de�ned using runners, and is monadic as we shall see in Lemma 13.

De�nition 12. Suppose given a tree runner θ from S to (A,E) and a relator
Γ on TA,E. The global θ-relator Γ θ is the relator on MS given by:

aΓ θ(R) b ⇐⇒ ∀k ∈K.θX(a, k)ΓP+(R × IK) θY (b, k)

Example 6. In case of A = ∅ and V ⊆ E, aΓ θ
V (R) b holds if for any k ∈K,

� If [x,u] ∈ θX(a, k), then there is a result [y, u] ∈ θY (b, k) such that xR y.
� If◇e ∈ θX(a, k) is a detectable exception e ∈ V , then◇e ∈ θY (b, k).
5.2 State Initialisations and Distinctions

The global relator is quite �ne-grained, testing for any possible initial state, and
distinguishing between any two di�erent �nal states. We can improve on this,
formulating what constitutes as a good starting set of states, and a good relation
on �nal states, such that we still get a relator. We do this in two steps: �rstly
we need to establish what features of the state we deem observable. This entails
formulating a base relation on state which is preserved by runs over a program.
Secondly, we need to establish which states can occur in a particular situation.
In this subsection, we consider �xed a tree runner θ from S to (A,E) with state
space K and a monadic relator Γ on TA,E .

Distinguishing Final States. We study preorders on the state spaceK (re�ex-
ive and transitive relations). Given a preorderR ⊆K×K, we de�ne θ(R) ⊆K×K:

aθ(R) b ⇐⇒ ∀p ∈ TX.θX(p, a)ΓP+(ιX ×R) θX(p, b)

The result θ(R) is also a preorder, and we sayR is preserved by runs ifR ⊆ θ(R).
In general, θ(R) is included in R, as can be observed by taking p = leaf(x) in
the de�nition. If R ⊆ U , then θ(R) ⊆ θ(U).
De�nition 13. The θ-closure of a preorder R ⊆ K ×K is the preorder Rθ ∶=
⋃{S ⊆ R ∣ S ⊆ θ(S)}. This is the largest subrelation of R preserved by runs.

The canonical choice would be to take (K ×K)θ, the θ-closure of the maximal
relation on K. More generally though, one would start with K ×K, remove any
pairs you would like to distinguish making sure the result stays a preorder, and
take the θ-closure of whatever you have left. The identity relation is the smallest
preorder preserved by runs, and is the one used in De�nition 12.

In some cases, the θ-closure can be more easily constructed.

� If θ gives at most one result for each input (it is thin), then Rθ = θ(R).
� If θ gives a �nite number of results for each input, then Rθ = ⋂n∈N θ

n(R).
For establishing stateful relations, we �x one preorder ≺ preserved by runs. If we
have no extra requirements, we take (K ×K)θ, the maximal option.



14 N.F.W. Voorneveld

Limiting Initial States. It is a strong requirement to demand programs to be
related for any possible initial state, especially when considering concurrent pro-
grams. For instance, the behavioural equivalence for global store programs will
become as �ne-grained as input/output programs if one can test it concurrently
with any possible other global store program (this second program can simulate
tests with its updates and lookups). Hence, for the veri�cation of concurrent
programs, it is important to limit the possible states that can occur.

We introduce the notion of state world. Given a trace t ∈ TA,EX and an
element x ∈ X, we write t ⋗ x if x is a leaf of t. In other words, [x] ⋗ x,◇e /⋗ x
and◯a t ⋗ x if and only if t ⋗ x. Let ↝ ⊆K ×K be the relation such that v ↝ w
when ∃p ∈ MX,x ∈ X.θX(p, v) ⋗ (x,w). This is a preorder due to the unit and
multiplication properties of the runner. A state world is a subset W ⊆ K such
that v ∈W ∧ v ↝ w Ô⇒ w ∈W . In other words, it is a set closed under runs of
programs. For each s ∈K, we de�ne the world [s] = {z ∈K ∣ s↝ z}.

Example 7. Considering Example 4, with as global state N the number of fees
that can be paid, which determines how many possible results we may get. In
this case, the θ-closure of N ×N is the standard ordering ≤ on N, since a higher
number gives more possible results. The relation ↝ is the relation ≥ since the
number can only go down, hence state worlds are down-closed subsets of N.

We �x a tree runner θ and a preorder ≺ preserved by runs.

De�nition 14. We de�ne the following relators on MS:

� for each s ∈K a relator Γ s where: aΓ s(R) b if θ(a, s)ΓP+(R×≺) θ(b, s).
� for each subset W ⊆K, a relator ΓW where: aΓW (R) b if ∀s ∈W , aΓ s(R) b.

Lemma 13. Given a state world W ⊆K and a state s ∈W :

� xR y implies η(x)ΓW (R)η(y), which implies η(x)Γ s(R)η(y).
� dΓ s(ΓW (R)) e⇒ µ(d)Γ s(R)µ(e), dΓW (ΓW (R)) e⇒ µ(d)ΓW (R)µ(e).

Proof. Given dΓ s(ΓW (R)) e, we know that for any t ∈ θ(d, s) there is an r ∈
θ(e, s) such that t Γ (ΓW (R)× ≺) r. Consider the sub-relation ≺W ∶= (≺)∩(W×W )
of ≺, then t Γ (ΓW (R)× ≺W ) r since any state in a leaf of t and r are in W .

We prove: If (a, u)ΓW (R)× ≺W (b, v), then θ(a, u)ΓP+(R × ≺) θ(b, v). Sup-
pose (a, u)ΓW (R)× ≺W (b, v), then aΓW (R) b, and u ≺W v, hence 1) u ≺ v
and 2) v ∈W . By the former, θ(a, u)ΓP+(IX× ≺) θ(a, v), since ≺ is preserved by
runs. By the latter, θ(a, v)ΓP+(R× ≺) θ(b, v), since aΓW (R) b. So by the relator
properties on ΓP+ , and transitivity on ≺, we get that θ(a, u)ΓP+(R × ≺) θ(b, v).

By naturality, P+T(θ)(θ(d, s))ΓP+(ΓP+(R× ≺))P+T(θ)(θ(e, s)), hence due to
the multiplication property on P+Γ = ΓP+ and the multiplication property for
runners, θ(µd, s)P+(Γ (R× ≺)) θ(µe, s). Hence µdΓ s(R)µe.

We conclude that for any state world W ⊆ S, ΓW is monadic.



Runners for Interleaving Algebraic E�ects 15

5.3 Algebraic Concurrent Theories

Taking a set of variables X, we can de�ne for each state world W ⊆ S the stateful
approximation ≤W ⊆ MX×MX as ΓW (ιX), and stateful equivalence ≡W⊆ MX×MX
as a ≡W b ⇐⇒ a ≤W b ∧ b ≤W a. Both these relations are preorders. The fact
that the relator is monadic consequently means these relations are substitutive:

Corollary 2. Given a state world W ⊆ K, a ≤W b and f, g ∶ X → TX s.t.
∀x ∈X.f(x) ≤W g(x), then µS

X(M(f)(a)) ≤W µS
X(M(g)(b)). Similarly for ≡W .

Hence, the relators give rise to proper algebraic theories. The above results
hold for any tree runner, including those implementing concurrency. Hence the
relators give a notion of equivalence for e�ectful programs within concurrent
environments containing other programs. We look at some concrete examples of
such situations, and how this concurrency a�ects the stateful equivalences.

Example 8 (Printing with interference). Consider Example 1 of programs print-
ing messages to an environment. Suppose some background process is printing
messages at unpredictable times. We describe this with the runner ϕ, de�ning it
to be the 1-concurrent completion θ∣1 of the runner θ from Example 1. This has
as state space T1 ×M∗ ≃M∗ ×M∗, containing the background process together
with a history of printed messages. We want to distinguish between di�erent
histories, but not necessarily between di�erent states of the background pro-
cess. Hence we take as relation on state ≺ ∶= ((T1)2 × ιM∗)ϕ, the largest relation
preserved by runs which distinguishes di�erent histories of printed messages.

Running a program in such an environment will intersperse the messages
of the program with messages from the background process. Suppose the back-
ground process keeps printing a ∈ M . We can model this with an inductively
de�ned set U ⊆ T1, such that [∗] ∈ U and t ∈ U implies ◯a (t) ∈ U (approxima-
tions of an in�nite sequence of prints). Note that U ×M∗ is a state world, since it
contains its own continuations. The notion of equivalence for running programs
with this background process can be speci�ed using the relator ΓU×M∗

.
The algebraic theory resulting from this environment re�ects the fact that,

since outputa could be scheduled after any output action, any outputa produced
by the program after the initial output can be ignored. So we have the equation:
outputb(outputa(leaf(x))) ≡U×M∗ outputb(leaf(x)).
Example 9 (Global Store). Consider Example 3 of the global store e�ect, where
for simplicity we take as memory space {0,1}, hence the lookup operation has
arity {0,1}, and we have two update operations. Let t ∈ MSX be the tree
update0(lookup(0 ↦ �,1 ↦ leaf(x))), which gives the set of branches β(t) =
{(0!)(0?)⟨�⟩, (0!)(1?)[x]} ⊆ TX. If t is run on its own with any initial state
i ∈ {0,1}, it must eventually yield the error message �, since 0 is saved to and
subsequently read from the global memory. Hence, under standard global store
semantics (implemented with the runner from Example 3), it holds that t ≡ �.

However, suppose t is run in an environment with a backup process which
updates the global store to 1, e.g. r = (1!)(r′) ∈ TY . Then (0!)(1!)(1?)[x, r′] ∈
ρ(t, r), which under global store semantics will yield, for any initial state i ∈
{0,1}, a result (x, r′) with �nal state 1. Hence, in this environment, t /≡ �.



16 N.F.W. Voorneveld

6 Conclusions

We have formulated an operation for interleaving concurrency satisfying the
unit and multiplication equations for residual monad-comonad interaction laws
in the sense of [13]. This operation can be used in at least two ways. Firstly,
it can evaluate two programs concurrently, producing a process which returns
a pair of return values. Secondly, we can run one program concurrently with
another program, where this other program need only be evaluated partially.
This forms a runner [29], which produces a return value of the former program
and remainder of the latter program. Both together allow us to precisely schedule
concurrent interleavings of higher-order programs.

The sequences of communications between a program and its environment are
given by traces, which can be given a behavioural interpretation using stateful
runners; a categorical formulation of how to handle and resolve e�ect operations
in a state dependent manner. This can be implemented in practise using Handlers
for algebraic e�ects [24,2]. One line of work for the future, is formulating a
congruent notion of applicative bisimilarity for concrete higher-order concurrent
languages, for example extending results from [15,26] for lambda-calculus style
languages, or from [18,19] for a continuation-passing style languages.

It is di�cult to generalise the interleaving operation to the monad of trees
due to the lack of naturality of the strength operation for trees in any wide sub-
category of Rel containing multi-valued (non-thin) relations. This is a problem,
since the interleaving concurrency operation itself is multi-valued. By using the
category of total relations Rel+, we are still able to include nullary operations
in our monad of traces. This is important, since many situations necessitate the
use of exceptions; some e�ect examples need to exclude impossible sequences of
events like reading the wrong state, and in case of in�nite recursive processes we
may have to mark the end of an approximation.

Models for alternative forms of concurrency could potentially be implemented
by adapting the formalism of this paper. Firstly, we might want to run certain se-
quences of operations without being interrupted by other programs, for instance
by only giving one program access to the environment at a time. This could be
modelled by using lists of actions as our atomic actions. Secondly, we could look
at models closer to true concurrency [11]. For instance, some operations may
be executed at the exact same time, producing traces over some monoid of ac-
tions. Such a denotation would need to be endowed with appropriate notions of
behaviour for simultaneously executed operations, which could be implemented
by a runner. Lastly, concurrency itself could be described with algebraic e�ects,
following [10], which may be combined with the approach of this paper.

Acknowledgement: This version of the contribution has been accepted for publi-
cation, after peer review (when applicable) but is not the Version of Record and
does not re�ect post-acceptance improvements, or any corrections. The Version
of Record is available online at: https://doi.org/10.1007/978-3-031-17715-6_26.
Use of this Accepted Version is subject to the publisher's Accepted Manuscript

https://doi.org/10.1007/978-3-031-17715-6_26


Runners for Interleaving Algebraic E�ects 17

terms of use https://www.springernature.com/gp/open-research/policies/accepted-
manuscript-terms.

References

1. Abramsky, S.: The Lazy Lambda Calculus, p. 65�116. Addison-Wesley Longman
Publishing Co., Inc., USA (1990)

2. Ahman, D., Bauer, A.: Runners in action. In: Müller, P. (ed.) Programming Lan-
guages and Systems - 29th European Symposium on Programming, ESOP 2020,
Dublin, Ireland, April 25-30. Lecture Notes in Computer Science, vol. 12075, pp.
29�55. Springer (2020). https://doi.org/10.1007/978-3-030-44914-8_2

3. Beck, J.: Distributive laws. In: Eckmann, B. (ed.) Seminar on Triples and Categor-
ical Homology Theory. pp. 119�140. Springer Berlin Heidelberg, Berlin, Heidelberg
(1969). https://doi.org/10.1007/BFb0083084

4. Bergstra, J.A., Klop, J.W.: Algebra of communicating processes with abstrac-
tion. Theoretical Computer Science 37, 77�121 (1985). https://doi.org/10.1016/
0304-3975(85)90088-X

5. Bergstra, J.A., Klop, J.W., Tucker, J.V.: Process algebra with asynchronous com-
munication mechanisms. In: Brookes, S.D., Roscoe, A.W., Winskel, G. (eds.) Sem-
inar on Concurrency. pp. 76�95. Springer Berlin Heidelberg, Berlin, Heidelberg
(1985). https://doi.org/10.1007/3-540-15670-4_4

6. Busi, N., Gorrieri, R.: A Survey on Non-interference with Petri Nets, pp. 328�344.
Springer Berlin Heidelberg, Berlin, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-27755-2_8

7. Clinger, W.D.: Foundations of actor semantics. Tech. rep., Massachusetts Institute
of Technology, USA (1981), http://hdl.handle.net/1721.1/6935

8. Fiore, M., Gambino, N., Hyland, M., Winskel, G.: The cartesian closed bicategory
of generalised species of structures. Journal of the London Mathematical Society
77, 203�220 (2008). https://doi.org/10.1112/jlms/jdm096

9. Fiore, M., Gambino, N., Hyland, M., Winskel, G.: Relative pseudomonads, Kleisli
bicategories, and substitution monoidal structures. Selecta Mathematica 24(3),
2791�2830 (Nov 2017). https://doi.org/10.1007/s00029-017-0361-3

10. Glabbeek, R.v., Plotkin, G.: On CSP and the Algebraic Theory of Ef-
fects, pp. 333�369. Springer London, London (2010). https://doi.org/10.1007/
978-1-84882-912-1_15

11. Gorrieri, R.: Interleaving vs true concurrency: Some instructive security exam-
ples. In: Janicki, R., Sidorova, N., Chatain, T. (eds.) Application and Theory of
Petri Nets and Concurrency. pp. 131�152. Springer International Publishing, Cham
(2020). https://doi.org/10.1007/978-3-030-51831-8_7

12. Hasuo, I., Jacobs, B., Sokolova, A.: Generic trace semantics via coinduction. Logical
Methods in Computer Science 3 (11 2007). https://doi.org/10.2168/LMCS-3(4:
11)2007

13. Katsumata, S.y., Rivas, E., Uustalu, T.: Interaction laws of monads and comonads.
In: Proc. of the 35th Ann. ACM/IEEE Symp. on Logic in Computer Science. p.
604�618. LICS '20, Association for Computing Machinery, New York, NY, USA
(2020). https://doi.org/10.1145/3373718.3394808

14. Keller, R.M.: Formal veri�cation of parallel programs. Commun. ACM 19(7),
371�384 (1976). https://doi.org/10.1145/360248.360251

https://doi.org/10.1007/978-3-030-44914-8_2
https://doi.org/10.1007/978-3-030-44914-8_2
https://doi.org/10.1007/BFb0083084
https://doi.org/10.1007/BFb0083084
https://doi.org/10.1016/0304-3975(85)90088-X
https://doi.org/10.1016/0304-3975(85)90088-X
https://doi.org/10.1016/0304-3975(85)90088-X
https://doi.org/10.1016/0304-3975(85)90088-X
https://doi.org/10.1007/3-540-15670-4_4
https://doi.org/10.1007/3-540-15670-4_4
https://doi.org/10.1007/978-3-540-27755-2_8
https://doi.org/10.1007/978-3-540-27755-2_8
https://doi.org/10.1007/978-3-540-27755-2_8
https://doi.org/10.1007/978-3-540-27755-2_8
http://hdl.handle.net/1721.1/6935
https://doi.org/10.1112/jlms/jdm096
https://doi.org/10.1112/jlms/jdm096
https://doi.org/10.1007/s00029-017-0361-3
https://doi.org/10.1007/s00029-017-0361-3
https://doi.org/10.1007/978-1-84882-912-1_15
https://doi.org/10.1007/978-1-84882-912-1_15
https://doi.org/10.1007/978-1-84882-912-1_15
https://doi.org/10.1007/978-1-84882-912-1_15
https://doi.org/10.1007/978-3-030-51831-8_7
https://doi.org/10.1007/978-3-030-51831-8_7
https://doi.org/10.2168/LMCS-3(4:11)2007
https://doi.org/10.2168/LMCS-3(4:11)2007
https://doi.org/10.2168/LMCS-3(4:11)2007
https://doi.org/10.2168/LMCS-3(4:11)2007
https://doi.org/10.1145/3373718.3394808
https://doi.org/10.1145/3373718.3394808
https://doi.org/10.1145/360248.360251
https://doi.org/10.1145/360248.360251


18 N.F.W. Voorneveld

15. Lago, U.D., Gavazzo, F., Levy, P.B.: E�ectful applicative bisimilarity: Monads,
relators, and Howe's method. In: Proc. of 32nd Ann. ACM/IEEE Symp. on Logic
in Computer Science, LICS'17. pp. 1�12. IEEE Computer Society (2017). https:
//doi.org/10.1109/LICS.2017.8005117

16. Levy, P.B.: Similarity quotients as �nal coalgebras. In: Hofmann, M. (ed.) Proc. of
14th Int. Conf. on Foundations of Software Science and Computational Structures,
FoSSaCS'11. Lecture Notes in Computer Science, vol. 6604, pp. 27�41. Springer
(2011). https://doi.org/10.1007/978-3-642-19805-2_3

17. MacLane, S.: Categories for the Working Mathematician. Springer-Verlag, New
York (1971). https://doi.org/10.1007/978-1-4612-9839-7, graduate Texts in Math-
ematics, Vol. 5

18. Matache, C.: Program Equivalence for Algebraic E�ects via Modalities. Master's
thesis, University of Oxford (2019)

19. Matache, C., Staton, S.: A sound and complete logic for algebraic e�ects. In: Proc.
of 22nd Int. Conf. on Foundations of Software Science and Computation Structures,
FoSSaCS'19. Lecture Notes in Computer Science, vol. 11425, pp. 382�399. Springer
(2019). https://doi.org/10.1007/978-3-030-17127-8_22

20. Melliès, P.A.: Template games and di�erential linear logic. In: 2019 34th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS). pp. 1�13 (2019).
https://doi.org/10.1109/LICS.2019.8785830

21. Milner, R.: Communication and Concurrency. Prentice-Hall, Inc., USA (1989)
22. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55�92 (Jul

1991). https://doi.org/10.1016/0890-5401(91)90052-4
23. Plotkin, G.D., Power, J.: Adequacy for algebraic e�ects. In: Honsell, F., Miculan,

M. (eds.) Proc. of 4th Int. Conf. on Foundations of Software Science and Compu-
tation Structures, FoSSaCS'01. Lecture Notes in Computer Science, vol. 2030, pp.
1�24 (2001). https://doi.org/10.1007/3-540-45315-6_1

24. Plotkin, G.D., Pretnar, M.: Handling algebraic e�ects. Log. Methods Comput. Sci.
9(4, article 23), 1�36 (2013). https://doi.org/10.2168/lmcs-9(4:23)2013

25. Rivas, E., Jaskelio�, M.: Monads with merging (Jun 2019), https://hal.inria.fr/
hal-02150199, working paper or preprint

26. Simpson, A., Voorneveld, N.: Behavioural equivalence via modalities for algebraic
e�ects. ACM Transactions on Programming Languages and Systems 42(1), 4:1�
4:45 (2020). https://doi.org/10.1145/3363518

27. Thijs, A.M.: Simulation and �xpoint semantics. Ph.D. thesis, Uni-
versity of Groningen (1996), https://research.rug.nl/en/publications/
simulation-and-�xpoint-semantics

28. Turi, D., Plotkin, G.: Towards a mathematical operational semantics. In: Pro-
ceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science. pp.
280�291 (1997). https://doi.org/10.1109/LICS.1997.614955

29. Uustalu, T.: Stateful runners of e�ectful computations. Electronic Notes in The-
oretical Computer Science 319, 403�421 (2015). https://doi.org/10.1016/j.entcs.
2015.12.024, the 31st Conference on the Mathematical Foundations of Program-
ming Semantics

30. Uustalu, T., Vene, V.: Comonadic notions of computation. Electronic Notes in
Theoretical Computer Science 203(5), 263�284 (2008). https://doi.org/10.1016/j.
entcs.2008.05.029, proceedings of the Ninth Workshop on Coalgebraic Methods in
Computer Science (CMCS 2008)

https://doi.org/10.1109/LICS.2017.8005117
https://doi.org/10.1109/LICS.2017.8005117
https://doi.org/10.1109/LICS.2017.8005117
https://doi.org/10.1109/LICS.2017.8005117
https://doi.org/10.1007/978-3-642-19805-2_3
https://doi.org/10.1007/978-3-642-19805-2_3
https://doi.org/10.1007/978-1-4612-9839-7
https://doi.org/10.1007/978-1-4612-9839-7
https://doi.org/10.1007/978-3-030-17127-8_22
https://doi.org/10.1007/978-3-030-17127-8_22
https://doi.org/10.1109/LICS.2019.8785830
https://doi.org/10.1109/LICS.2019.8785830
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1007/3-540-45315-6_1
https://doi.org/10.1007/3-540-45315-6_1
https://doi.org/10.2168/lmcs-9(4:23)2013
https://doi.org/10.2168/lmcs-9(4:23)2013
https://hal.inria.fr/hal-02150199
https://hal.inria.fr/hal-02150199
https://doi.org/10.1145/3363518
https://doi.org/10.1145/3363518
https://research.rug.nl/en/publications/simulation-and-fixpoint-semantics
https://research.rug.nl/en/publications/simulation-and-fixpoint-semantics
https://doi.org/10.1109/LICS.1997.614955
https://doi.org/10.1109/LICS.1997.614955
https://doi.org/10.1016/j.entcs.2015.12.024
https://doi.org/10.1016/j.entcs.2015.12.024
https://doi.org/10.1016/j.entcs.2015.12.024
https://doi.org/10.1016/j.entcs.2015.12.024
https://doi.org/10.1016/j.entcs.2008.05.029
https://doi.org/10.1016/j.entcs.2008.05.029
https://doi.org/10.1016/j.entcs.2008.05.029
https://doi.org/10.1016/j.entcs.2008.05.029

	Runners for Interleaving Algebraic Effects

