
MFPS 2020 Draft

Combining Algebraic Effect Descriptions
using the Tensor of Complete Lattices

Niels Voorneveld1,2

Department of Software Science
Tallinn University of Technology

Tallinn, Estonia

Abstract

Algebras can be used to interpret the behaviour of effectful programs. In particular, we use Eilenberg-Moore algebras given
over a complete lattices of truth values, which specify answers to queries on programs. The algebras can be used to formulate
a quantitative logic of behavioural properties, specifying a congruent notion of program equivalence coinciding with a notion of
applicative bisimilarity. Many combinations of effects can be interpreted using these algebras. In this paper, we specify a method
of generically combining effects and the algebras used to interpret them. At the core of this method is the tensor of complete
lattices, which combines the carrier set of the algebras. We show that this tensor preserves complete distributivity of complete
lattices. Moreover, the universal properties of this tensor can then be used to properly combine the Eilenberg-Moore algebras. We
will apply this method to combine the effects of probability, global store, cost, nondeterminism, and error effects. We will then
compare this method of combining effects with the more traditional method of combining equational theories using interaction
laws.

Keywords: Algebraic effects, Eilenberg-Moore algebra, Tree monad, Complete lattice, Tensor product, Program equivalence,
Quantitative logic, Applicative bisimilarity, Probability, Nondeterminism, Global store.

1 Introduction

Effects can alter the behaviour of functional programs in many ways. In order to interpret the behaviour of
effectful programs, we choose a set of answers called a quantitative truth space, and a set of questions (theoretical
tests on programs) given by algebras. In [31], such truth spaces and algebras are used to formulate a logic of
quantitative behavioural properties, which induces a notion of program equivalence. This is a generalisation
of earlier work based on modalities (Boolean algebras) [28,29].

We study algebraic effects in the sense of [25]. Such algebraic effects are given by a signature of effect
operations. For each effect we choose a truth space A of answers given by a complete lattice, and one or more
algebras. Such algebras can be specified by local functions over the effect operations (forming an observation
algebra). If such functions preserve non-empty suprema, they induce an ω-continuous Eilenberg-Moore algebra.
Many examples of algebraic effects can be expressed using such algebra, including probability, global store,
nondeterminism, error, and cost.

An ω-continuous Eilenberg-Moore algebra specifies a notion of program equivalence on functional lan-
guages with effects and general recursion. This program equivalence can be formulated as applicative bisim-
ilarity [1,6,7], and as logical equivalence via a quantitative logic [31,32]. Moreover, the algebra induces a
compositional equational theory, which for the various examples coincide with the usual equational theories for
algebraic effects formulated in the literature (see e.g. [24,26,27] for such equational theories).

The main contribution of this paper is the development of a uniform method for combining effects described
by algebras constructed using local functions over effect operations. This method uses the tensor product on

1 This research was supported by the ESF funded Estonian IT Academy research measure (project 2014-2020.4.05.19-0001).
2 Email: niels.voorneveld@gmail.com

This is a draft of a paper to be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:niels.voorneveld@gmail.com

Voorneveld

complete lattices, featured e.g. in [10,17,30,34]. This operation is a symmetric monoidal product which
naturally combines the different notions of truth for the different effects. We show that the tensor product
preserves complete distributivity of complete lattices. Complete distributivity is useful for characterising the
structure of the tensor of complete lattices.

We combine algebras by combining their local functions, following an elegant definition in terms of the
universal property of the tensor product. Given that the complete lattices we use are completely distributive,
this combination of local functions preserves the supremum preservation property mentioned before. As such,
the induced algebras are suitable for inducing notions of program equivalence.

We compare this method of combining effects with the more traditional way of combining equational
theories, which is done by specifying interaction laws such a commutativity [15,16]. We see that our method of
combining effects does not uniformly coincide with either the sum or the tensor of equational theories. Instead,
it “chooses” interaction laws appropriate to each combination of effects.

In Section 2, we start some preliminaries on algebraic effects and complete lattices. In Section 3, we
formulate how to interpret effects using effect descriptions, which allow us to construct algebras. In Section 4
we develop a general theory for combining quantitative truth spaces given by completely distributive lattices
using the tensor product. Then in Section 5, we use universal properties of the tensor product to combine
functions on complete lattices. In Section 6, we formulate how to combine effect descriptions and their algebras,
and apply this method to study several combinations of effects. Lastly, in Section 7, we compare this method
with methods for combining equational theories.

2 Preliminaries

We represent effects using algebraic effect operations following [25]. Each operation op has an arity ar(op) ∈ N,
which tells how many arguments the operation has. For example, we can consider the operation of nonde-
terministic choice nor, which has arity 2 and chooses nondeterministically between two possible continuations
given by its arguments.

For each effect, or combination of effects, we specify an effect signature Σ given by a set of effect operations.

Definition 2.1 A Σ-effect tree (henceforth tree) over a set X is a possibly infinite tree whose nodes are:

(i) leaf nodes labelled 〈x〉 for x ∈ X,

(ii) leaf nodes labelled ⊥, describing divergence,

(iii) and internal nodes op for op ∈ Σ, which has ar(op) many children.

We write op〈t1, . . . , tar(op)〉 for the tree whose root has node op, and whose children are given by t1, . . . , tar(op).
If a tree only has finitely many nodes, we call it finite. We write T νΣ(X) for the set of trees over X, and TµΣ(X)
for the subset of T νΣ(X) containing the finite trees over X.

Given an order on X, we can inductively define an order on TµΣ(X) according to the following rules:

• For any x, y ∈ X, x ≤X y ⇒ 〈x〉 ≤TµΣ (X) 〈y〉.
• For any t ∈ TµΣ(X), ⊥ ≤TµΣ (X) t.

• For any op ∈ Σ, and l1, . . . , lar(op), r1, . . . , rar(op) ∈ TµΣ(X),
(∀1 ≤ i ≤ ar(op).li ≤TµΣ (X) ri)⇒ op〈l1, . . . , lar(op)〉 ≤TµΣ (X) op〈r1, . . . , rar(op)〉.

The above definition can be adapted to give a coinductive formulation of an order on T νΣ(X). Moreover, if X
is an ω-cpo (it contains limits of increasing sequences), then T νΣ(X) is an ω-cpo as well. Moreover, each tree is
the limit of a sequence of finite trees.

The operations TµΣ(−) and T νΣ(−) give endofunctors in the category of posets. Taking some order preserving
map f : X → Y , we can lift it to an order preserving map on trees TµΣ(f) : TµΣ(X) → TµΣ(Y), where TµΣ(f)(t)
is the result of replacing in t each leaf 〈x〉 with 〈f(x)〉, leaving the rest of the tree unchanged. We define the
function T νΣ(f) : T νΣ(X)→ T νΣ(Y) in the same way.

There is an alternative formulation of these functors. First, we have the partiality functor (−)⊥ on posets
which adds a minimal element ⊥ to its argument. Given an effect signature Σ, we define the signature functor
FΣ as FΣ(X) =

∑
op∈ΣX

ar(op). Then we define the functors using smallest and largest fixpoint constructions:

TµΣ(X) = µY.(X + FΣY)⊥, T νΣ(X) = νY.(X + FΣY)⊥ .

Both TµΣ(−) and T νΣ(−) form monads in the category of posets, where the unit η is given by ηX(x) = 〈x〉, and
the monad multiplication µ is given by locally replacing each leaf η(t) by the subtree t (we “flatten” the input).

2

Voorneveld

We end this first section with a brief note on operational semantics. A computation is program that needs
to be evaluated, or reduced, in order to produce a result. In general, we consider a computation to either
return a value or diverge, potentially encountering effects along the way. As such, we interpret the operational
semantics of a programming language as giving a function: | − | : Computations→ T νΣ(Values). In the absence
of recursion, this function could be given by | − | : Computations→ TµΣ(Values).

When we test a property of a program, we often start with a property on the values this program can return.
For instance, a property of natural numbers can be “Evenness”. A property on values is in general given by
a quantitative predicate P : Values → A. This uses a truth space A, like the Booleans, or the real number
interval [0, 1] of probabilities. To translate this predicate on values, to programs which return such values, we
want to lift the predicate P to a quantitative predicate P ′ : Computations→ A. For this purpose, we specify an
algebra α : T νΣ(A)→ A in order to perform the following composition: (α ◦ T νΣ(P) ◦ | − |) : Computations→ A.

This composition implements the following intuition. We have a program which, after invoking some effects,
produces a value according to the operational semantics | − |. We have determined a degree of truth for each
potential value the program may return, in the form of a quantitative predicate P . Lastly, we have an algebra
α, which interprets how effects encountered during the execution of the program combines the degrees of truths
of all possible return values, and the effectful ways we could get to those values, into a singular degree of truth.

Take for instance a program which tosses a coin, and on heads will return an 3, and on tails a 6. We want
to determine to what degree this program produces an even number. So we take a predicate P which associates
to 3 a 0 probability of being even, and to 6 a 1 probability of being even. Then our algebra combines these
two results, with the knowledge that the coin is fair. This allows it to combine the result, and determine that
the program is expected to produce an even number half of the time.

In the above example, we use as truth space A = [0, 1], the real number interval representing probabilities
that certain properties (like “evenness”) are held. However, depending on the effect in question, we may need
other notions of truth. For instance, for computations using a global store, truth is conditional on the state
of this global store upon initiation of evaluation. In that case, we might use the powerset of states as truth
space. In the next subsection we establish what properties A, the truth values for our quantitative predicates,
needs to satisfy to be useful, keeping it general enough to accommodate a plethora of examples.

2.1 Complete lattices

To interpret effectful behaviour, we use a poset of truth values, potential answers to questions asked of (or tests
performed on) programs. Intuitively, if a < b, then b represents a truth which holds in “more” evaluations of
a program than the truth of a. The notion of “more” depends on the effect in question. It may mean: more
likely, or for more initial states.

In order for this space of truth values to be suitable for specifying a congruent notion of program equivalence,
it needs to be a complete lattice. This has two theoretical reasons:

• In order to construct enough quantitative predicates for distinguishing between behaviourally different pro-
grams, we need to close our collection of predicates under arbitrary suprema and infima.

• To formulate applicative bisimilarity, a relation lifting device called a relator is defined using our algebras.
To facilitate this process, suprema are used to prove that such relators preserve composition of relations.

We will not go further into these points, see [31,32] for more details.
Given a poset A and a subset X ⊆ A, we write

∨
X for the supremum of X: the unique smallest element

of A larger than any element in X. Let
∧
X be the infimum of X: the unique largest element of S smaller

than all elements in X. These elements may not exist. We distinguish between two notions of completeness.

Definition 2.2 A poset A is a complete lattice if for any X ⊆ A,
∨
X exists.

A poset A is an inhabitant complete lattice (or icomplete lattice) if for any non-empty X ⊆ A,
∨
X exists.

If A is a complete lattice, the infimum
∧
X always exists, and is equal to

∨
{x ∈ A | ∀y ∈ X,x ≤ y}.

Note that a complete lattice is also icomplete. The difference between the two notions of completeness is
whether or not the element

∨
∅, the smallest element of A, exists. The top element,

∧
∅ =

∨
A, always exists

in an icomplete lattice. We denote FA for the smallest element of A, and TA for the biggest element of A.
We expand the intuition of the complete lattice as a truth space, giving degrees of truth associated to a test

or property of a program. For instance we make ask ourselves whether: “the program returns an even number”.
The element TA denotes the fact that the property is always observed, regardless of effects that may occur in
the evaluation of the program. This happens for instance if the program terminates with a desirable result,
without any interference of effects. The element FA denotes the fact the property is never observed. This
can for instance happen if the program diverges, or produces an undesirable result, without any interference
of effects. Even when effects occur, TA and FA may be attained. For instance, a randomized algorithm may
produce different results but still have a 100% probability of producing an even number.

3

Voorneveld

Examples of complete lattices include: The Booleans containing only true and false. The real number
interval [0, 1] describing probabilities that a statement is true. The powerset P(S) of states S describing initial
states of a global store for. The natural numbers N∞ with limit element ∞, describing costs.

There is a functor !(−) from the category of icomplete lattices Icom to the category of complete lattices Com,
which adds a smallest element to its input. This functor is left adjoint to the forgetful functor U : Com→ Icom
(which forgets that its input has a smallest element). Note that both U◦! and ! ◦ U give an endofunctor akin
to the partiality functor (−)⊥ on categories Icom and Com respectively.

Importantly, TµΣ(−) and T νΣ(−) are not functors in these categories, since TµΣ(X) and T νΣ(X) do not tend
to have top elements. For instance, to different effect operators do not have a common upper bound. This is
why we will remain firmly inside the category of posets when discussing algebras.

We write Πi∈IAi for the I-indexed product of sets Ai. An element of this space is given in lambda notation,
λi.ai, which represents an I-indexed family where for each i ∈ I, ai ∈ Ai.

Definition 2.3 A function f : Πi∈IAi → B from a product of icomplete lattices to an icomplete lattice is
ilinear if for any family of nonempty subsets {Si ⊆ Ai}i∈I , f(λi.

∨
Si) =

∨
{f(λi.xi) | ∀i.xi ∈ Si}.

A function f : Πi∈IAi → B from a product of complete lattices to a complete lattice is linear if for any
family of subsets {Si ⊆ Ai}i∈I , f(λi.

∨
Si) =

∨
{f(λi.xi) | ∀i.xi ∈ Si}.

If a function is linear, than it is ilinear. Conversely, an ilinear function f : Πi∈IAi → B on complete lattices is
linear if and only if for any family of elements {xi ∈ Ai}i∈I such that ∃i ∈ I.xi = FAi , then f(λi.xi) = FB .

The reason why we distinguish between linearity and ilinearity is because of a disconnect between the
demands on the truth space A, and the demands on how to answer questions using an algebra. Linearity is
the inherent property of morphisms in Com which contains our truth spaces, whereas the local functions which
will make up our algebras are ilinear, not linear (see the forthcoming examples in Subsection 3.2).

A complete lattice is completely distributive if the infima distributes over the suprema operation. See for
instance [8] for an overview of properties of complete lattices. There is an equivalent definition to complete
distributivity using linearity:

Definition 2.4 A complete lattice A is completely distributive if for any set I, the infima operation∧
I Πi∈IA→ A, sending λi.xi to

∧
i∈I xi, is linear.

Observe that it is sufficient to require the infima operations
∧
I to be ilinear, since they satisfy the extra

property of bottom preservation discussed before. Assuming that our truth spaces are completely distributive
will be necessary later on for establishing some properties. Note however, that it is always possible to freely
generate a completely distributive lattice from any complete lattice. So in theory, this restriction to complete
distributivity is not restrictive in terms of applications to describing effects.

3 Effect Descriptions

For each effect, or combination of effects, we choose a completely distributive lattice A of truth values, or space
of observables. To interpret the behaviour of effects, we specify an algebra α : TµΣ(A) → A in the category of
posets. This algebra is constructed using the following recipe.

For each op ∈ Σ, we specify a function αop : Aar(op) → A. We call such functions the local functions of α.
We combine all these local functions to create a function FαΣ : (A+FΣ(A))⊥ → A with the following definition:

FαΣ (⊥) := FA =
∨
∅, FαΣ (inleft(a)) = a, FαΣ (inright(op(a1, . . . , aar(op))) = αop(a1, . . . , aar(op)).

This function inductively induces an algebra α : TµΣ(A)→ A on TµΣ(−) = µY.((−) + FΣ(Y))⊥.
If an algebra is constructed using the above recipe, we call it a locally constructed algebra.

Definition 3.1 Given a monad (M,η, µ), an algebra a : MA → A is an Eilenberg-Moore algebra (henceforth
EM-algebra) if the following two diagrams commute:

A
ηA //

id
!!

MA

a

��
A

MMA Ma //

µA

��

MA

a

��
MA a

//A

By induction on TµΣ(A), we get the following result.

Lemma 3.2 Any locally constructed algebra α forms an Eilenberg-Moore algebra.

4

Voorneveld

We use the algebra to interpret the behaviour of effectful computations, by lifting predicates on values to
predicates on computations.

Given an algebra a : MA→ A, we can lift a quantitative predicate P : X → A to a quantitative predicate
a(P) := (a◦M(P)) : MX → A. E.g., given a predicate on values P : Values→ A we can use the aforementioned
operational semantics to lift it to a predicate on computations (α(P) ◦ | − |) : Computations→ A.

Definition 3.3 An algebra a : MA → A on an icomplete lattice A is leaf-ilinear if for any set X, element
t ∈ TµΣ(X) and function f : X → P6=∅(A) associating to each x ∈ X a non-empty subset of A,

α(
∨
◦f)(t) =

∨
{α(P)(t) | P : X → A,∀x ∈ X.P (x) ∈ f(x)} .

The concept of leaf-ilinearity implements the notion of ilinearity of algebras α : TµΣ(A)→ A to the extend that
it is possible, given that TµΣ(A) is not necessarily an icomplete lattice. The leaves of TµΣ(A) are taken from the
icomplete lattice A, and as such are closed under non-empty suprema. Leaf-ilinearity asserts that the algebra
preserves such suprema within the leaves.

By induction on the structure of TµΣ(A), we have the following result.

Lemma 3.4 If the algebra α is locally constructed by ilinear local functions, then α is leaf-ilinear.

3.1 Infinitary trees

We use leaf-ilinearity to extend the algebra α : TµΣ(A)→ A to an algebra α̂ : T νΣ(A)→ A capable of interpreting
infinite trees. Firstly, note that any ilinear function is monotone. As such, we can establish the following result
by induction:

Lemma 3.5 Suppose a is a leaf-ilinear EM-algebra such that α(⊥) = FA.
For any two trees t, t′ ∈ TµΣ(A) such that t ≤TµΣ (A) t

′, α(t) ≤ α(t′).

Remember from Lemma 3.4 that a locally constructed algebra α automatically satisfies the EM-algebra laws
and α(⊥) = FA conditions.

Consider a tree t ∈ T νΣ(A), then there is an ascending sequence of trees t0 ≤ t1 ≤ t2 ≤ . . . in TµΣ(A) such
that t =

∨
n tn =

∨
{tn | n ∈ N}. We say that the sequence t0, t1, . . . approximates t. We define α̂(t) as∨

n α(tn). This is well-defined, since for any two sequences t0, t1, . . . and t′0, t
′
1, . . . approximating t, then for

any n, there is an m such that tn ≤ t′m and hence by Lemma 3.5, α(tn) ≤ α(t′m). Hence
∨
n α(tn) ≤

∨
n α(t′n)

and vice versa,
∨
n α(tn) ≥

∨
n α(t′n).

Last but not least, we have the following result, for which we give a brief sketch of a proof.

Lemma 3.6 Suppose α is a locally constructed leaf-ilinear algebra. Then α̂ : T νΣ(A)→ A is an EM-algebra.

Proof. Any ilinear function f : An → A is ω-continuous: Given a series of ascending se-
quences {a1

i }i∈N, {a2
i }i∈N, . . . , {ani }i∈N in A, then, by ilinearity and monotonicity: f(

∨
i a

1
i , . . . ,

∨
i a
n
i) =∨

{f(ai1 , . . . , ain) | i1, . . . , in ∈ N} =
∨
i f(a1

i , . . . , a
n
i). Using this, we can by induction establish that, for

any ascending sequence of trees t0 ≤TµΣ (A) t1 ≤TµΣ (A) . . . , α̂(
∨
i∈N ti) =

∨
i∈N α(ti).

Since any tree η(a) is finite, the η rule is simple to prove. For the µ-rule, take d ∈ T νΣ(T νΣ(A)), and take some
sequence of elements d0, d1, . . . of TµΣ(TµΣ(A)) approximating d. Then {T νΣ(α̂)(di)}i∈N is an increasing sequence
of elements of T νΣ(A). Hence: α̂(T νΣ(α̂)(d)) = α̂(T νΣ(α̂)(

∨
i di)) = α̂(

∨
i T

µ
Σ(α̂)(di)) =

∨
i α(TµΣ(α̂)(di)) =∨

i α(µdi) = α̂(
∨
i µdi) = α̂(µ(

∨
i di)) = α̂(µd). 2

In the rest of this paper, we will concern ourselves more with ilinear local functions, then with algebras. But
we will keep in mind that algebras can be constructed using ilinear local functions. We specify the following
structure for interpreting effects.

Definition 3.7 An effect description (Σ, A, α) consists of an effect signature Σ, a completely distributive
lattice A, and an interpretation α given by an ilinear function αop : Aar(op) → A for each op ∈ Σ.

3.2 Examples

We look at some examples of effects and their effect descriptions.

Example 3.8 [Probability] We consider the effect signature Σprob = {por} with a single effect operation por for
binary probabilistic choice. The operation has arity 2, and chooses fairly between two continuations. We give

5

Voorneveld

this the effect description (Σprob, [0, 1],Exp), with as complete lattice of truth values the real number interval
[0, 1]. We give probabilistic computations the expectation interpretation Exp, given by the local function
Exppor : [0, 1]2 → [0, 1] which calculates the average between its two arguments Exppor(a, b) = (a + b)/2. The
constructed algebra Exp : T νΣ([0, 1])→ [0, 1] will calculate the expected value of a leaf a ∈ [0, 1], assuming each
choice in a tree t ∈ T νΣ([0, 1]) is resolved fairly.

Example 3.9 [Global Store] We consider a set of global store locations Loc for storing Boolean values. We
consider the effect signature Σglobal := {lookupl, updatel(T), updatel(F) | l ∈ Loc} which for each global store
location l has a lookup operation lookupl of arity 2 and two update operations updatel(T), updatel(F) of arity
1. The update operations store a Boolean value to a global store, whereas the lookup operations look up a
Boolean value from a global store location, and uses it to choose one of two continuations: The left continuation
if the value is T and the right continuation if the value is F. We write S := BLoc for the set of global states,
and we call elements of P(S) ' (S → B) assertions on the global state. We give this effect the description
(Σglobal,P(S),Wp) with the weakest precondition interpretation Wp, where:

Wplookupl(a, b) := {s ∈ a | s(l) = T} ∪ {s ∈ b | s(l) = F}.
Wpupdatel(v)(a) := {s[l := v] | s ∈ a}, where s[l := v](l) = v and s[l := v](l′) = s(l′) for any l′ 6= l.

Wp : T νΣ(P(S)) → P(S) will calculate the set of correct starting states for which, when the computation is
evaluated with that state, it terminates in some leaf 〈R〉 with a final state satisfying assertion R ∈ P(S).

Example 3.10 [Cost] We consider the effect signature Σcost := {costq | q ∈ Q>0}, where for each positive
rational number q we have an effect operation costq with arity 1, which requires a cost q to be spend before
continuing evaluation. For example, a sleep operation which delays computation for some time, or a save
operation which requires a certain amount of memory to be reserved. We see the nonnegative reals [0,∞] with
reverse order as the space of total costs (which contain all limits of rational costs). We give the effect the
description (Σcost, [0,∞],Tal) with the tally interpretation Tal summing all costs together, where

Talcostq (a) = a+ q.

Example 3.11 [Nondeterminism] We consider the effect signature Σnon = {nor} with one effect operation
nor for binary nondeterministic choice with arity 2. We give this the effect description (Σnon,A,Pos), with as
truth space the three element chain A := {F,3,T} containing the three degrees of possibility (this is e.g. used
in [14] for describing nondeterminism). The smallest element F represents impossibility, the middle element 3
represents possibility, and the largest element T represents inevitability. We give the effect the interpretation
Pos which issues the degree of possibility and follows the algebraic structure established in [5,4]:

Posnor(a, a) = a, Posnor(a, b) = 3 if a 6= b.
The constructed algebra Pos : T νΣ(A)→ A will produce T if any resolution of choice leads to a leaf labelled T,
otherwise it will produce 3 if it is possible to get to a leaf labelled T or 3.

Example 3.12 [Error] We consider the effect signature Σerror := {raise} with a single effect operation raise
of arity 0, which aborts evaluation displaying an error message. We use the effect description (Σerror,A,Err)
where A is as given above. We give this the interpretation Err where Errraisee() = 3. This effect may be
combined with itself using the forthcoming method for combining effects, in order to get an interpretation of
multiple errors. For simplicity, we consider only one error at this time.

Example 3.13 [Pure computation] Last but not least, we consider the situation in which there is no effectful
behaviour at all (except for divergence). This has the effect description (∅,B, ↓) with an empty signature, the
Booleans as truths space, and the termination interpretation, which has no local functions since the signature
is empty. The constructed algebra ↓: T νΣ(B)→ B, where T νΣ(B) = (B)⊥, sends ⊥ to F and v ∈ B to v.

We end this section with a short discussion on how these algebras can give rise to notions of program
equivalence.

As noted before, an algebra α : T νΣ(A) → A can be used to lift a predicate on values to a predicate on
computations. This can be used to generate a logic of quantitative formulas, as done in [31]: For each type in
the language, we have a collection of formulas. A program of a type functions as a model of such formulas,
satisfying each formula to a certain degree a ∈ A. We say that two programs of the same type are behaviourally
equivalent if they satisfy each formula to the same degree.

It is also possible to define a notion of applicative bisimilarity, in the sense of [1,7]. We can define a relator
using our algebra, which lifts a relation on values to a relation on computations. This relator specifies a notion
of applicative bisimulation, a relation which is closed under certain operations (like application). Two programs
are applicatively bisimular if there is an applicative bisimulation which relates the two. Given that our algebra
is an ω-continues EM-algebra, this notion of applicative bisimilarity coincides with the notion of behavioural
equivalence (see [31]).

6

Voorneveld

Last but not least, we can define the notion of contextual equivalence. We specify a basic relation on
computations of base type: Two programs of base type are equivalent if they satisfy each predicate, lifted
by the algebra, to the same degree. The contextual equivalence is then the largest compatible (or congruent)
relation which, on base types, coincide with the basic relation. Contextual equivalence is a bit of an outlier since
in general, A need not be a complete lattice for the definition to work, and this notion of program equivalence
does not always coincide with the above two notions (in particular in the presence of nondeterminism).

4 Tensor of Complete Lattices

We have defined effect descriptions to interpret the behaviour of algebraic effects. We will now start building the
foundation for combining effects and their descriptions. In particular, given two effect descriptions (Σ1, A1, α1)
and (Σ2, A2, α2), we want to find an effect description (Σ12, A12, α12) for the combination of effects.

Firstly, the combined signature Σ12 is given by the sum or disjoint union of the original two signatures
Σ12 := Σ1 + Σ2. Combining truth spaces and local functions is more involved. In this section, we developed
the theory for combining these things, starting with the tensor operation on complete lattices. This tensor,
and its two representations, are featured in [10,17,30,34].

Definition 4.1 The tensor product of two complete lattices A and B is a complete lattice A⊗B such that there
is a universal linear function uA,B : A×B → A⊗B with the property that: Any linear function f : A×B → C
into a complete lattice C is the composition of uA,B with some linear function f⊗ : (A⊗B)→ C.

In particular, this factorisation gives us a natural bijection between linear functions f : (A) × (B) → C
with two arguments and linear functions g : (A ⊗ B) → C with one argument. This can be generalised to a
bijection between linear functions f : Πi∈I(Ai ×Bi)→ C and linear functions g : Πi∈I(Ai ⊗Bi)→ C.

We look at different representations of the tensor A⊗B of two complete lattices (featured in the aforemen-
tioned literature), respectively the powerset representation and the function representation:

(i) (A⊗B)P := {S ⊆ A×B | ∀x ⊆ A, y ⊆ B, x× y ⊆ S ⇔ (
∨
x,
∨
y) ∈ S}, with inclusion order.

For any a ∈ A, b ∈ B, uPA,B(a, b) := {(a′, b′) ∈ A×B | a′ = FA ∨ b′ = FB ∨ (a′ ≤ a ∧ b′ ≤ b)}.
A linear function f : A×B → C factors through g : (A⊗B)P → C given by g(S) :=

∨
{f(a, b) | (a, b) ∈ S}.

(ii) (A⊗B)→ := {f : A→ B | ∀x ⊆ A.f(
∨
x) =

∧
{f(a) | a ∈ x}}, with pointwise (extensional) order.

A linear function f : A×B → C factors through g : (A⊗B)→ → C given by g(h) :=
∨
{f(a, h(a)) | a ∈ A}.

Depending on which two complete lattices we combine, we may choose an appropriate representation of
the tensor. In the general theory, we will mainly stick to the powerset representation. Since (A ⊗ B)P and
(A⊗B)→ both represent the same complete lattice, there is an isomorphism between the two, given by:

• R : (A⊗B)P → (A⊗B)→, R(S) = λa.
∨
{b ∈ B | (a, b) ∈ S}.

• L : (A⊗B)→ → (A⊗B)P , L(h) = {(a, b) ∈ A×B | b ≤ h(a)}.
We give a concrete definition to the aforementioned bijection between linear functions f : Πi∈I(Ai×Bi)→ C

and linear functions g : Πi∈I(Ai⊗Bi)→ C with respect to the powerset representation of the tensor product.

F : (Πi∈I(Ai ×Bi)→ C)→ (Πi∈I(Ai ⊗Bi)P → C), F (f)(λi.Si) :=
∨
{f(λi.(ai, bi)) | ∀i ∈ I.(ai, bi) ∈ Si}.

(1)
We look at some known properties of the tensor product, using the two representations interchangeably.

Lemma 4.2 The tensor product B⊗A, of the Booleans and a complete lattice A, is isomorphic to A.

Proof. We use the function representation. Elements of (B⊗A)→ are given by supremum reversing functions
f : B → A. These are precisely the functions f : B → A such that f(F) = TA, hence they are in one-to-one
correspondence with elements of A (values given by f(T)). 2

Proposition 4.3 The tensor product gives a symmetric monoidal product in the category of complete lattices
Com, with the unit given by the Boolean B.

Proof. First note that the powerset representation immediately gives us symmetry. Using the function repre-
sentation, it can be shown that (A⊗(B⊗C)→)→ is isomorphic to (B⊗(A⊗C)→)→. Using these isomorphisms:
(A⊗ (B ⊗C)) ' (A⊗ (C ⊗B)) ' (A⊗ (C ⊗B)→)→ ' (C ⊗ (A⊗B)→)→ ' (C ⊗ (A⊗B)) ' ((A⊗B)⊗C).

Lemma 4.2 shows the Booleans are a unit for the tensor product. 2

We look at one more example of a tensor product relevant to combining effects (Example 1.2.9 from [9]).

7

Voorneveld

Lemma 4.4 The tensor product (P(S)⊗A), of the powerset lattice P(S) and a complete lattice A, is isomorphic
to the complete lattice (S → A), of functions from S to A, with pointwise order.

Proof. We use the function representation. Take f ∈ (P(S)⊗ A)→, which is a supremum reversing function
f : P(S) → A. Then for any set K ⊆ S, f(K) = f(

⋃
s∈K{s}) =

∧
s∈K f({s}). Hence f is completely

determined by the function f ′ : S → A given by λs.f({s}). Vice versa, each function g : S → A determines an
f sending K to

∧
s∈K g(s). Hence (P(S)⊗A)→ is isomorphic to the function space S → A. 2

4.1 The supremum of tensor products

We have a closer look at the powerset representation of the tensor of two complete lattices. It is easy to
establish that infimum operation on (A ⊗ B)P is given by the intersection on sets. The supremum operation
on (A⊗B)P however is more complicated. Luckily, if the tensor is taken over completely distributive lattices,
this supremum can be given a clear and usable characterisation. This will be useful later in the paper.

Firstly, we investigate the following closure operation.

Definition 4.5 Given two complete lattices A and B, and a subset S ⊆ A × B, let Ŝ ⊆ A × B be the set
{(
∨
x,
∨
y) | x ⊆ A, y ⊆ B, x× y ⊆ S}.

Note that if S ∈ (A ⊗ B), then S = Ŝ. Moreover, for S ⊆ S′ ⊆ A × B, Ŝ ⊆ Ŝ′, hence Ŝ is always included
in the smallest element of (A⊗ B) containing S. With the following lemma, we can prove that under certain

conditions, Ŝ is the smallest element of (A⊗B) including S.
We call a subset S ⊆ A×B down-closed if for any (a, b) ∈ S, a′ ≤ a, and b′ ≤ b, we get (a′, b′) ∈ S.

Lemma 4.6 Suppose that both A and B are completely distributive lattices, then for any down-closed S ⊆
A×B, Ŝ ∈ (A⊗B).

Proof. Suppose (
∨
x,
∨
y) ∈ Ŝ, then there are x′ ⊆ A and y′ ⊆ B such that (x′ × y′) ⊆ S,

∨
x′ =

∨
x and∨

y′ =
∨
y. Hence for any a ∈ x and b ∈ y, by down-closure of S, ({a∧a′ | a′ ∈ x′}×{b∧b′ | b′ ∈ y′}) ⊆ S, hence

(
∨
{a∧a′ | a′ ∈ x′},

∨
{b∧ b′ | b′ ∈ y′}) ∈ Ŝ. Now, by distributivity,

∨
{a∧a′ | a′ ∈ x′} = a∧

∨
x′ = a∧

∨
x = a

and similarly
∨
{b ∧ b′ | b′ ∈ y′} = b. Hence (a, b) ∈ Ŝ.

Suppose (x× y) ⊆ Ŝ, then for any a ∈ x and b ∈ y, there are xba ⊆ A and yba ⊆ B such that (xba × yba) ⊆ S,∨
xba = a, and

∨
yba = b. For a family of sets of elements {zi}i∈I of a complete lattice, we denote

∧
i zi for the

set {
∧
i∈I ci | ∀i ∈ I, ci ∈ zi}. Since S is down-closed, it holds that for any a ∈ x, b′ ∈ y, ((

∧
b∈y x

b
a)× yb′a) ⊆ S,

hence for any a ∈ x, ((
∧
b∈y x

b
a) × (

⋃
b∈y y

b
a)) ⊆ S (where

⋃
is union). Repeating this process, we can derive

that ((
⋃
a∈x(

∨
b∈y x

b
a)) × (

∧
a∈x(

⋃
b∈y y

b
a))) ⊆ S, hence (

∨
(
⋃
a∈x(

∧
b∈y x

b
a)),

∨
(
∧
a∈x(

⋃
b∈y y

b
a))) ∈ Ŝ. Now, by

distributivity,∨
(
⋃
a∈x(

∧
b∈y x

b
a)) =

∨
a∈x(

∨
(
∧
b∈y x

b
a)) =

∨
a∈x(

∧
b∈y(

∨
xba)) =

∨
a∈x(

∧
b∈y a) =

∨
a∈x a =

∨
x,∨

(
∧
a∈x(

⋃
b∈y y

b
a)) =

∧
a∈x(

∨
(
⋃
b∈y y

b
a)) =

∧
a∈x(

∨
b∈y(

∨
yba)) =

∧
a∈x(

∨
b∈y b) =

∧
a∈x(

∨
y) =

∨
y.

We conclude that (
∨
x,
∨
y) ∈ Ŝ. 2

Corollary 4.7 For A and B two completely distributive lattices, then for any X ⊆ (A⊗B),
∨
X =

⋃̂
X.

Proof. Since all members of X, as elements of (A⊗B), are down-closed, we know
⋃
X is down-closed as well.

Hence by the previous lemma,
⋃̂
X ∈ (A⊗B). So, considering

∨
X must be the smallest element of (A⊗B)

containing
⋃
X, it must be equal to

⋃̂
X. 2

An example: uA,B(a, b) ∨ uA,B(a′, b′) = uA,B(a, b) ∪ uA,B(a′, b′) ∪ uA,B(a ∨ a′, b ∧ b′) ∪ uA,B(a ∧ a′, b ∨ b′).

5 Combining functions

The tensor product gives us a clear way of combining two linear functions f : Πi∈IA→ A and g : Πi∈IB → B
into a single linear function (f ⊗ g) : Πi∈I(A⊗B)→ (A⊗B). This is done in the following way:

(i) Compose f and g with uA,B into a single linear function uA,B ◦ (f, g) : Πi∈IA×Πi∈IB → (A⊗B).

(ii) Permute the arguments of the function to get a linear function from Πi∈I(A×B) to (A⊗B).

(iii) Apply F from 1 to the result to get a linear function (f ⊗ g) : Πi∈I(A⊗B)→ (A⊗B).

8

Voorneveld

To get a clearer picture of what is going on, we can apply this construction directly to the powerset repre-
sentation (A⊗ B)P of the tensor product. This gives us a concrete definition of the combination of functions
(f ⊗ g)P : Πi∈I(A⊗B)P → (A⊗B)P , which is as follows:

(f ⊗ g)P(λi.Si) :=
∨
{uA,B(f(λi.ai), g(λi.bi)) | ∀i.(ai, bi) ∈ Si}.

Using the powerset representation, we can make the following observation.

Proposition 5.1 If both A and B are completely distributive lattices, then A⊗B is completely distributive.

Proof. We use the alternative definition for complete distributivity given in Definition 2.4.

Take some set I, and consider the infimum functions
∧A
I and

∧B
I on A and B respectively. Since A and B

are completely distributive, both infimum functions are linear. Hence their combination (
∧A
I ⊗

∧B
I) is linear

too. Consider some family {Si}i∈I of elements of (A⊗B).

(
∧A
I ⊗

∧B
I)P(λi.Si) =

∨
{uA,B ◦ (

∧A
I ,
∧B
I)(λi.ai, λi.bi) | ∀i.(ai, bi) ∈ Si}

=
∨
{uA,B(

∧
i∈I ai,

∧
i∈I bi) | ∀i.(ai, bi) ∈ Si}

=
∨
{uA,B(a, b) | (a, b) ∈

⋂
i∈I Si}

=
⋂
i∈I Si =

∧
i∈I Si

This used the facts that, for X ⊆ (A⊗B),
⋂
X =

∧
X, and for S ∈ (A⊗B),

∨
{uA,B(a, b) | (a, b) ∈ S} = S.

Hence, (
∧A
I ⊗

∧B
I) is the infimum function on (A⊗B), which we know is linear. This holds for all I, so we

conclude by Definition 2.4 that (A⊗B) is completely distributive. 2

5.1 Combining ilinear functions

As can be seen in the examples of Subsection 3.2, local functions are not linear in general, they are ilinear. For
example, Exppor(F[0,1],T[0,1]) = (0 + 1)/2 6= 0 = F[0,1]. So we need a method of combining ilinear functions.
Luckily, if all the complete lattices concerned are completely distributive, the bijection F given in (1) preserves
ilinearity. This allows us to use the same construction to combine ilinear functions.

Lemma 5.2 Suppose that A and B are completely distributive lattices, then for any ilinear function f :
Πi∈I(A×B)→ C, F (f), the function F (f) : Πi∈I(A⊗B)→ C is ilinear.

Proof. Take for any i ∈ I an arbitrary set Xi ⊆ (A ⊗ B). By Corollary 4.7, ∀i ∈ I.
∨
Xi =

⋃̂
Xi. Since for

any a ∈ A and b ∈ B,
⋃
Xi contains (a,FB) and (FA, b), it already contains (

∨
x,
∨
y) for either x or y empty,

hence we have
∨
Xi =

⋃̂
Xi = {(

∨
x,
∨
y) | x ⊆ A, y ⊆ B, both non-empty and x× y ⊆

⋃
Xi}.

F (f)(λi.
∨
Xi) =

∨
{f(λi.(ai, bi)) | ∀i ∈ I.(ai, bi) ∈

∨
Xi}

=
∨
{f(λi.(

∨
xi,
∨
yi)) | ∀i ∈ I.xi ⊆ A, yi ⊆ B, both non-empty s.t. xi × yi ⊆

⋃
Xi}

(by ilinearity) =
∨
{f(λi.(ai, bi)) | ∀i ∈ I.ai ∈ xi ⊆ A, bi ∈ yi ⊆ B, xi × yi ⊆

⋃
Xi}

=
∨
{f(λi.(ai, bi)) | ∀i ∈ I.(ai, bi) ∈

⋃
Xi}

=
∨
{f(λi.(ai, bi)) | ∀i ∈ I.∃Si ∈ Xi.(ai, bi) ∈ Si}

=
∨
{
∨
{f(λi.(ai, bi)) | ∀i.(ai, bi) ∈ Si} | ∀i.Si ∈ Xi}

=
∨
{F (f)(λi.Si) | ∀i ∈ I.Si ∈ Xi} .

We conclude that F (f) : Πi∈I(A⊗B)→ C is ilinear. 2

We finish this section with this final important result, showing that we can safely combine ilinear functions.

Proposition 5.3 Suppose A and B are two completely distributive lattices, and consider two ilinear functions
f : (Πi∈IA)→ A and g : (Πi∈IB)→ B. Then (f ⊗ g) : (Πi∈I(A⊗B))→ (A⊗B) given by F (uA,B ◦ (f, g)) is
ilinear.

Proof. Note that uA,B is linear, hence ilinear. So (Πi∈IuA,B)◦ (f, g) is ilinear as well. Hence we get the result
by a simple application of Lemma 5.2. 2

There is an alternative, but equivalent, formulation for the above combination of ilinear functions. We define
the tensor ⊗i of icomplete lattices, the itensor, using Definition 4.1 but replacing linearity with ilinearity. This
gives us a bijective function F i : Πi∈I(A × B) → (A ⊗i B) between spaces of ilinear function. Using the

9

Voorneveld

adjunction U ` !, we can find an ilinear function (UA ⊗i UB) → U(A ⊗ B) over complete lattices A and B.
We compose F i with that function to retrieve our function F . Proving that these functions coincide however,
seems to require quite a bit of effort. As such, the approach in this paper uses the more direct, and theoretically
less cumbersome, approach. Further comparison between the two tensors could be an interesting research topic
for the future.

6 Combining effect descriptions

We combine two effect descriptions (Σ1, A1, α1) and (Σ2, A2, α2) into an effect description (Σ12, A12, α12), where
Σ12 := Σ1 + Σ2, A12 := (A1 ⊗A2), and α12 is defined by the following ilinear local functions:

For op ∈ Σ1, let α12,inleft(op) : (A⊗B)ar(op) → (A⊗B) be (α1,op ⊗
∧

ar(op)).

For op ∈ Σ2, let α12,inright(op) : (A⊗B)ar(op) → (A⊗B) be (
∧

ar(op)⊗ α2,op).

The combined effect interpretation is defined by combining the relevant interpretation of an effect operation
from its source with the infimum function. Hence, since A1 and B1 are completely distributive, α12 is made
up of ilinear local functions. For ease of notation, we will write α1 ∗ α2 for α12 when looking at examples.

Lemma 6.1 Given some ilinear function f : AI → A and infimum/conjunction
∧

: BI → B on the Booleans.
Then (f ⊗

∧
) is under the isomorphism (A⊗ B) ' A from Lemma 4.2 equal to f .

Proof. (f ⊗
∧

)(λi.Si) =
∨
{uA,B(f(λi.ai),

∧
i∈I bi) | ∀i ∈ I.(ai, bi) ∈ Si}. Since for any S ∈ (A ⊗ B) and all

a ∈ S, (a,F) ∈ S, we need only concern ourselves with the case where
∧
i∈I bi 6= F, hence when ∀i ∈ I.bi = T.

So (f ⊗
∧

)(λi.Si) =
∨
{uA,B(f(λi.ai),T) | ∀i ∈ I.(ai,T) ∈ Si}. Using the isomorphism (A ⊗ B) ' A we can

transport (f ⊗
∧

) to a function from AI to A, which is given by sending λi.ai to:∨
{a | (a,T) ∈

∨
{uA,B(f(λi.a′i),T) | ∀i ∈ I.(a′i,T) ∈ uA,B(ai,T)}} = f(λi.ai). 2

In general, for op ∈ Σ1, α12,op(λi.Si) =
∨
{uA,B(α1,op(λi.ai), b) | b ∈ B, ∀i.(ai, b) ∈ Si}.

Proposition 6.2 The method of combining effects gives a symmetric and associative operation on effect de-
scriptions, with a unit given by pure computations (∅,B, ↓).

Proof. The sum on signatures Σ is a symmetric and associative operation, with a unit given by the empty
set ∅. By Proposition 4.3, we know the tensor to be a symmetric and associative operation on complete lattices,
with a unit given by B. Lastly, the tensor combination of ilinear functions is symmetric, associative 3 , and has
a unit given by an infimum function over B (see Lemma 6.1). 2

6.1 Examples of combining effects

To illustrate how the above method yields valid interpretations of combinations of effects, we look at a handful
of examples. In each case, we add a specific effect to an arbitrary effect description. In Subsection 7.1, we will
look at some more specific combinations of effects.

Example 6.3 [Adding nondeterminism] Take some effect description (Σ, A, α). To this, we add nondeter-
minism with choice operator nor : α2 → α, truth space A and interpretation Pos. The combined truth space
(A⊗ A) is given by the space of pairs {(a, b) ∈ A2 | a ≤ b}. Such a pair (a, b) represents a worst-case value a
and a best case value b, corresponding to demonic and angelic nondeterminism respectively.

Let β be the combined interpretation given by α ∗ Pos. Our method yields the following local functions:

• ∀op ∈ Σ. βinleft(op)(λi.(a.i, b.i)) = (αop(λi.ai), αop(λi.bi)).

• βinright(nor)((a1, b1), (a2, b2)) = (a1 ∧ a2, b1 ∨ b2).

We can give β an alternative description. The algebra β will resolve nondeterministic choices of an input tree
both in the worst possible way and in the best possible way. It will then apply α to the resulting two trees,
and return two values of A respectively.

Example 6.4 [Adding Global Store] Take some effect description (Σ, A, α). To this we add Boolean Global
Store with effect signature Σglobal = {lookupl, updatel(T), updatel(F) | l ∈ Loc}, assertions P(S) and weakest
precondition interpretation Wp. As shown in Lemma 4.4, the tensor of the two complete lattices is given by
the function space S → A. We can see this as the space of valuations or quantitative A-valued assertions on
global states S. Let β be the combination of interpretations (α ∗Wp), then we get:

3 This fact is not completely trivial, but is straightforward to prove.

10

Voorneveld

• ∀op ∈ Σ. βinleft(op)(λi.fi) = λs ∈ S.αop(λi.fi(s)).

• βinright(lookupl)(f1, f2) = λs ∈ S.(f1(s) if s(l) = T, else f2(s)).

• βinright(updatel(v))(f) = λs ∈ S.f(s[l := v]).

We can give β an alternative description. The algebra β will resolve, for each starting state s, the global store
operations of its input tree appropriately, and give its leaves (which are functions from S to A) the final state
as argument. To each resulting tree, it will apply α to reach the appropriate value in A.

Example 6.5 [Adding Cost] Take some effect description (Σ, A, α). To this, we add the cost effect, with effect
signature Σcost := {costq | q ∈ Q≥0}, truth space [0,∞] with reverse order, and the tally interpretation Tal.
The tensor of the truth spaces is given by functions R≥0 → A which are infimum preserving with respect to
the standard ordering of the real numbers. Technically, it is functions from [0,∞], but∞ is always sent to TA,
so we can remove it from the definition without loss of generality.

Let β = (α ∗ Tal) be the combination of interpretations. Then:

• For op ∈ Σ, βinleft(op)(λi.fi) = λr ∈ R≥0. αop(λi.fi(r)).

• βinright(costq)(f) = λr ∈ R≥0. f(r + q).

We can give β an alternative description. The algebra β will, given a certain allowance r ∈ R≥0 to spend, go
through the tree spending the allowance on resolving any cost operations. Once it encounters a cost operation
it cannot pay for, it puts a ⊥ leaf at that location. If it encounters another leaf, which contains a function
from R≥0 to A, it feeds this function the remaining allowance as an argument and puts the result as the new
value of the leaf. It then it applies α to the resulting tree.

7 Equations and interaction laws

Given some countable set of variables V, we see an element of T νΣ(V) as an algebraic expression. A pair of
algebraic expressions (e1, e2) ∈ T νΣ(V) × T νΣ(V) expresses an equation (e1 = e2) or inequation (e1 ≤ e2). A
relation on algebraic expressions R ⊆ (T νΣ(V))2 can be specified by choosing a set of axioms A ⊆ (T νΣ(V))2

appropriate to the effect, and closing this set under a couple of proof rules, e.g. compositionality :

∀(e1, e2) ∈ R,∀f, g : V→ T νΣ(V). (∀x ∈ V.f(x)Rg(x)) =⇒ (T νΣ(f)(e1), T νΣ(g)(e2)) ∈ R .

An axiom we tend to assume for each effect is the inequation (⊥ ≤ x) where x ∈ V. This reflects the fact that
a diverging computation does not produce anything observable.

An EM-algebra α : T νΣ(A)→ A on some preorder specifies a relation Rα ⊆ (T νΣ(V))2 as follows:

(e1, e2) ∈ Rα ⇐⇒ ∀f : V→ A. α̂(T νΣ(f)(e1)) ≤ α̂(T νΣ(f)(e2)) .

If α is an EM-algebra, then Rα is compositional. More on this comparison can be found in [33].
We say that an algebra α complements a set of axioms A if they generate the same algebraic relation. The

word complement expresses the fact that, whereas equations state equality between programs, algebras are
used to find distinctions between programs (see Examples 7.2 and 7.6 for such a distinctions). An equation
(e1, e2) holds for α if (e1, e2) ∈ Rα. This direct correspondence allows us to compare the method of combining
effects defined in this paper with traditional methods for combining equational theories of effects [15,16].

Firstly, we observe that equations which holds for the individual effects still holds for the combination of
effects. Note that for two effect signatures Σ ⊆ Σ′, T νΣ(V) ⊆ T νΣ′(V). For simplicity, we consider Σ1 + Σ2 =
Σ1 ∪ Σ2, hence it contains both Σ1 and Σ2.

Proposition 7.1 Given two effect descriptions (Σ1, A1, α1) and (Σ2, A2, α2), let (Σ12, A12, α12) be their com-
bination. Then both Rα1

⊆ T νΣ1
(V) and Rα2

⊆ T νΣ1
(V) are contained in Rα12

⊆ T νΣ12
(V).

Proof. Consider t ∈ T νΣ1
((A⊗B)P), hence t only has internal nodes from Σ1. For b ∈ B, we define the function

fb : (A⊗B)P → A by S 7→
∨
{a ∈ A | (a, b) ∈ S}. We prove that α̂12(t) =

∨
{uA,B(α̂1(T νΣ1

(fb)(t)), b) | b ∈ B}.
We start with an induction over finite trees, using the local functions. First the base cases.

If t = ⊥, then α12(t) = FA,B =
∨
{uA,B(FA, b) | b ∈ B} =

∨
{uA,B(α1(TµΣ1

(fb)(t)), b) | b ∈ B}.
If t = 〈S〉, then α12(t) = S =

∨
{uA,B(a, b) | (a, b) ∈ S} =

∨
{uA,B(fb(S), b) | b ∈ B} =∨

{uA,B(α1(TµΣ1
(fb)(t)), b) | b ∈ B}.

If t = op〈t1, . . . , tn〉, then

11

Voorneveld

α12(t) = α12,op(α12(t1), . . . , α12(tn))

= α12,op(
∨
{uA,B(α1(TµΣ1

(fb)(t1)), b) | b ∈ B}, . . . ,
∨
{uA,B(α1(TµΣ1

(fb)(tn)), b) | b ∈ B})
=

∨
{α12,op(uA,B(α1(TµΣ1

(fb1)(t1)), b1), . . . , uA,B(α1(TµΣ1
(fbn)(tn)), bn)) | b1, . . . , bn ∈ B}

=
∨
{uA,B(α1,op(a1, . . . , an),

∧
i b
′
i) | ∀i.bi ∈ B, (ai, b′i) ∈ uA,B(α1(TµΣ1

(fbi)(ti)), bi)}
=

∨
{uA,B(α1,op(a1, . . . , an), b) | ∀i, bi ∈ B, b ∈ B, (ai, b) ∈ uA,B(α1(TµΣ1

(fbi)(ti)), bi)}
=

∨
{uA,B(α1,op(a1, . . . , an), b) | ∀i, ai ∈ A, b ∈ B, ai ≤ α1(TµΣ1

(fb)(ti))}
=

∨
{uA,B(α1,op(α1(TµΣ1

(fb)(t1)), . . . , α1(TµΣ1
(fb)(tn))), b) | b ∈ B}

=
∨
{uA,B(α1(TµΣ1

(fb)(t1)), b) | b ∈ B} .

Which is what we wanted to prove. For an infinite tree t approximated by finite trees t1, t2, t3, . . . :
α̂12(t) = α̂12(

∨
i ti) = α̂12(

∨
i ti) =

∨
i α12(ti) =

∨
i

∨
{uA,B(α1(TµΣ1

(fb)(ti)), b) | b ∈ B} =∨
{uA,B(

∨
i α1(TµΣ1

(fb)(ti)), b) | b ∈ B} =
∨
{uA,B(α̂1(T νΣ1

(fb)(
∨
i ti)), b) | b ∈ B}.

Consider an equation (e1, e2) ∈ (T νΣ1
(V)) which holds for α1. Then, given f : V → (A ⊗ B), we know by

the above result that α̂12(T νΣ1
(f)(e1)) = α̂12(T νΣ1

(f)(e2)), hence the equation holds for α12. 2

In particular, if α1 complements a set of axioms A, then all equations from A still hold for α12. We conclude
that equations are preserved.

7.1 Comparing methods of combining effects

Given two sets of axioms A1 ⊆ (T νΣ1
(V))2 and A2 ⊆ (T νΣ2

(V))2, then we define the axioms of the equational
sum [15,16] of effects to be A1 ∪A2. This is called the sum, since it only contains the original axioms. In some
cases, the interpretation of a combination of effects defined in this paper corresponds to the equational sum:

Example 7.2 [Cost with Error] We combine the effects of cost in Example 3.10, and error in Example 3.12,
using Example 6.5. The resulting combination of effects coincides with the sum of equational theories. We can
see that for any q ∈ Q>0, the effect operation costq does not distribute over raise. This is because costq(raise())
and raise() are distinguished by the combined algebra (Tal ∗ Err):

(Tal ∗ Err)(raise())(0) = 3 6= F = (Tal ∗ Err)(costq(raise()))(0) .

Or informally, if we have no resources (the 0 argument), then raise() will yield an error (the 3), whilst
costq(raise()) will stall (the ⊥) as it requests a resource we do not have. We can use this as a basis to prove
that our combined algebra complements the sum of equational theories..

In other cases, extra axioms are needed to describe the interaction between the effects we want to combine.
Such axioms, which contain effect operations from both theories, are called interaction laws. The most common
interaction law is a commutativity law [15,16].

Definition 7.3 Given two effect operations op1 and op2 of arity n and m respectively, the commutativity law
between op1 and op2 is given by:

op1(λi. op2(λj. vi,j)) = op2(λj. op1(λi. vi,j)) ,

where we use a distinct variable vi,j ∈ V for each 1 ≤ i ≤ n and 1 ≤ j ≤ m. 4

Let commut(Σ1,Σ2) ⊆ T νΣ1+Σ2
(V) be the set containing the commutativity law for each pair op1 ∈ Σ1

and op2 ∈ Σ2. Given two sets of axioms A1 ⊆ (T νΣ1
(V))2 and A2 ⊆ (T νΣ2

(V))2, then we define the axioms
of the equational tensor [16] of effects to be A1 ∪ A2 ∪ commut(Σ1,Σ2). In some cases, the description of a
combination of effects as defined in this paper corresponds to the equational tensor:

Example 7.4 [Probability with Global store] We combine the effects of probability in Example 3.8, and global
store in Example 3.9, using Example 6.4. We will show that the relation Rα induced by the combined algebra
α = Exp∗Wp contains all the commutativity laws. From Example 6.4, we know that the combined truth space
is given by A = (S→ [0, 1]). Now, por commutes with lookupl since, given a, b, c, d ∈ A:

4 The choice of variables is unimportant, since the resulting (induced) relation on T ν
Σ(V) will be closed under substitution.

12

Voorneveld

α(por(lookupl(a, b), lookupl(c, d))) = λs.(α(lookupl(a, b))(s) + α(lookupl(c, d))(s))/2

= λs.

{
(a(s) + c(s))/2 if s(l) = T

(b(s) + d(s))/2 if s(l) = F

= α(lookupl(por(a, c), por(b, d))) .

The operation por commutes with updatel,T since, given a, b ∈ A:

α(por(updatel,T(a), updatel,T(b))) = λs.(α(updatel,T(a))(s) + α(updatel,T(b))(s))/2

= λs.(a(s[l := T]) + b(s[l := T]))/2

= λs.α(por(a, b))(s[l := T])

= α(updatel,T(por(a, b))) .

Hence, Rα contains commut(Σprob,Σglobal), the commutativity laws. We conclude that α complements the
tensor of equational theories.

In some cases, the equational sum coincides with the equational tensor. This is because the commutativity
laws are already present in the original sets of axioms.

Example 7.5 [Nondeterminism with Error] We combine the effects of nondeterminism in Example 3.11, and
error in Example 3.12. As seen in Proposition 7.1, the relation Rα induced by the combined interpretation
α = (Pos ∗ Err) contains the original axioms of the theory. One such axiom is that of idempotency, that
nor(x, x) = x. The commutativity law between nor and raise is given by nor(raise, raise) = raise, which can be
proven using idempotency, substituting raise for x. Hence the combination of effects complements both the
sum and the tensor of equational theories (since they are identical).

Lastly, there is an instance in which the method of combining effects neither corresponds to the equational
sum, nor with the equational tensor:

Example 7.6 [Probability with Nondeterminism] We combine the effects of probability in Example 3.8, and
nondeterminism in Example 3.9, using Example 6.3. The combined truth space A is given by ordered pairs
(a, a′) of elements a, a′ ∈ [0, 1]. Let α = (Exp ∗ Pos). We first show that this algebra does not complement
the sum of equational theories, since the interaction law por(x, nor(y, z)) = nor(por(x, y), por(x, z)) holds for α.
Take (a, a′), (b, b′), (c, c′) ∈ A:

α(por((a, a′), nor((b, b′), (c, c′)))) = ((a+ (b ∧ c))/2, (a′ + (b′ ∨ c′)/2))

= ((a+ b)/2 ∧ (a+ c)/2, (a′ + b′)/2 ∨ (a′ + c′)/2)

= α(nor(por((a, a′), (b, b′)), por((a, a′), (b, b′)))) .

However, the commutativity law por(nor(x, y), nor(z, w)) = nor(por(x, z), por(y, w)) does not holds for α, since
for x = (0, 0), y = w = (1/4, 1/4), and z = (1, 1):

α(por(nor(x, y), nor(z, w))) = (((0 ∧ 1/4) + (1 ∧ 1/4))/2, ((0 ∨ 1/4) + (1 ∨ 1/4))/2)

= (1/8, 5/8) 6= (1/4, 1/2)

= ((0 + 1)/2 ∧ (1/4 + 1/4)/2, (0 + 1)/2 ∨ (1/4 + 1/4)/2)

= α(nor(por(x, z), por(y, w))) .

Hence, the combined interpretation α neither complements the sum, nor complements the tensor of equational
theories. Instead, it complements the natural theory for this combination of effects, as e.g. described in [19,20].

8 Conclusions and related work

In this paper, we looked at Eilenberg-Moore algebras over the tree monad, whose carrier sets are given by
complete lattices. These are used in [31,32] to formulate behavioural equivalence, in particular to define
a quantitative modality : lifting quantitative predicates on values to quantitative predicates on computations.
These quantitative modalities are a generalisation of Boolean modalities, given by subsets of T νΣ({∗}), and used
in [28,29,23] to specify program equivalence. In turn, those modalities are based on the notion of observation
from [18].

Eilenberg-Moore algebras describing weakest preconditions, as done in our example for global store, are
commonly used for describing effectful programs, see e.g. [13]. In [3,21], weakest precondition semantics are
given in terms of Dijkstra monads. It would be interesting to see whether the theory developed here has
practical applications to the formalism developed in those papers.

13

Voorneveld

This paper only features a selection of examples, though a lot more effects, like Input/Output, can be given
an effect description. It is also possible to implement the jump effect, which is given an algebraic description
in [11]. Moreover, though we only looked at a couple of combinations of effects, we can use the method
developed in this paper to give a description of any combination of the effects featured in this paper.

One interesting combination we did not look at specifically is the combination of global store and error. It
turns out, that this combination coincides with the tensor of equational theories. Informally, this describes the
situation in which the global store is inaccessible after an error has been raised. It is however possible to define
an algebra complementing the sum of equational theories, as defined in [31,32]. We can tweak interpretations
of combinations of effects in other ways too. E.g., when combining probability with cost, we can associate a
cost to each probabilistic choice.

Lastly, the algebras used in this paper seem suitable for defining quantitative relations, e.g. metrics [12,22],
on functional programming languages with effects. For metrics, quantales tend to be used as space of distances.
Since completely distributive lattices are quantales, there is a possible link between such metrics and the alge-
bras used in this paper. It could be possible to develop a formalism for using algebras for defining quantitative
relations, and use the method for combining effects to combine such quantitative relations. This would be an
interesting avenue for future research.

References

[1] Abramsky, S., The lazy λ-calculus, Research Topics in Functional Programming (1990), pp. 65–117.

[2] Abramsky, S. and C. Ong, Full abstraction in the lazy lambda calculus, Information and Computation 105 (1993), pp. 159 –
267.

[3] Ahman, D., C. Hritcu, K. Maillard, G. Mart́ınez, G. Plotkin, J. Protzenko, A. Rastogi and N. Swamy, Dijkstra monads for
free, in: 44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL), 2017, pp. 515–529.

[4] Battenfeld, I., K. Keimel and T. Streicher, Observationally-induced algebras in domain theory, Logical Methods in Computer
Science 10(3:18) (2014), pp. 1–26.

[5] Battenfeld, I. and M. Schröder, Observationally-induced effect monads: Upper and lower powerspace constructions, Electron.
Notes Theor. Comput. Sci. 276 (2011), p. 105–119.

[6] Crubillé, R. and U. D. Lago, On probabilistic applicative bisimulation and call-by-value λ-calculi, Lecture Notes in Computer
Science 8410 (2014).

[7] Dal Lago, U., F. Gavazzo and P. B. Levy, Effectful applicative bisimilarity: Monads, relators, and the Howe’s method, Logic
in Computer Science (2017), pp. 1–12.

[8] Davey, B. A. and H. A. Priestley, “Introduction to Lattices and Order,” Cambridge University Press, 2002, 2 edition.

[9] Eklund, P., J. Gutiérrez Garćıa, U. Höhle and J. Kortelainen, “Semigroups in Complete Lattices: Quantales, Modules and
Related Topics,” 2018.

[10] Erné, M. and J. Picado, Tensor products and relation quantales, Algebra Univers. 78 (2017), p. 461–487.

[11] Fiore, M. and S. Staton, Substitution, jumps, and algebraic effects, in: Proceedings of the Twenty-Third EACSL Annual
Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), CSL-LICS ’14, 2014, pp. 41:1–41:10.

[12] Gavazzo, F., Quantitative behavioural reasoning for higher-order effectful programs: Applicative distances, in: Proceedings of
the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, 2018, pp. 452–461.

[13] Hasuo, I., Generic weakest precondition semantics from monads enriched with order, Theoretical Computer Science 604
(2015), pp. 2–29.

[14] Heckmann, R., Abstract valuations: A novel representation of plotkin power domain and vietoris hyperspace, Electr. Notes
Theor. Comput. Sci. 6 (1997), pp. 160–173.

[15] Hyland, M., G. Plotkin and J. Power, “Combining Computational Effects: Commutativity and Sum,” Springer US, Boston,
MA, 2002 pp. 474–484.

[16] Hyland, M., G. Plotkin and J. Power, Combining effects: Sum and tensor, Theoretical Computer Science 357 (2006), pp. 70
– 99.

[17] Jacobs, B., Semantics of weakening and contraction, Annals of Pure and Applied Logic 69 (1994), pp. 73 – 106.

[18] Johann, P., A. Simpson and J. Voigtländer, A generic operational metatheory for algebraic effects, in: Proceedings of Logic in
Computer Science (LICS’10), 2010, pp. 209–218.

[19] Keimel, K. and G. D. Plotkin, Mixed powerdomains for probability and nondeterminism, Logical Methods in Computer Science
13 (2017).

14

Voorneveld

[20] Lopez, A. and A. Simpson, Basic operational preorders for algebraic effects in general, and for combined probability and
nondeterminism in particular, in: 27th EACSL Annual Conference on Computer Science Logic, CSL 2018, 2018, pp. 29:1–
29:17.

[21] Maillard, K., D. Ahman, R. Atkey, G. Mart́ınez, C. Hritcu, E. Rivas and E. Tanter, Dijkstra monads for all, in: 24th ACM
SIGPLAN International Conference on Functional Programming (ICFP), 2019.

[22] Mardare, R., P. Panangaden and G. D. Plotkin, Quantitative algebraic reasoning, in: Proceedings of the 31st Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, 2016, pp. 700–709.

[23] Matache, C. and S. Staton, A sound and complete logic for algebraic effects, in: Lecture Notes in Computer Science, Springer
International Publishing, 2019 pp. 382–399.

[24] Plotkin, G. D., Domains (1983), course notes.

[25] Plotkin, G. D. and J. Power, Adequacy for algebraic effects, Foundations of Software Science and Computation Structures
(2001), pp. 1–24.

[26] Plotkin, G. D. and J. Power, Notions of computation determine monads, in: Proceedings of the 5th International Conference
on Foundations of Software Science and Computation Structures, 2002, pp. 342–356.

[27] Sigmon, K., Cancellative medial means are arithmetic, Duke Math. J. 37 (1970), pp. 439–445.

[28] Simpson, A. and N. Voorneveld, Behavioural equivalence via modalities for algebraic effects, in: Programming Languages and
Systems (ESOP 2018), 2018, pp. 300–326.

[29] Simpson, A. and N. Voorneveld, Behavioural equivalence via modalities for algebraic effects, ACM Trans. Program. Lang.
Syst. 42 (2020), 45 pages.

[30] Sünderhauf, P., Tensor products and powerspaces in quantitative domain theory, Electronic Notes in Theoretical Computer
Science 6 (1997), pp. 327 – 347, MFPS XIII, Mathematical Foundations of Progamming Semantics, Thirteenth Annual
Conference.

[31] Voorneveld, N., Quantitative logics for equivalence of effectful programs, Electronic Notes in Theoretical Computer Science
347 (2019), pp. 281 – 301, proceedings of the Thirty-Fifth Conference on the Mathematical Foundations of Programming
Semantics.

[32] Voorneveld, N., “Equality between programs with effects,” Ph.D. thesis, University of Ljubljana (2020).

[33] Voorneveld, N., From equations to distinctions: Two interpretations of effectful computations (2020), accepted to MSFP 2020.

[34] Wille, R., Tensorial decomposition of concept lattices, Order 2 (1985), p. 81–95.

15

	Introduction
	Preliminaries
	Complete lattices

	Effect Descriptions
	Infinitary trees
	Examples

	Tensor of Complete Lattices
	The supremum of tensor products

	Combining functions
	Combining ilinear functions

	Combining effect descriptions
	Examples of combining effects

	Equations and interaction laws
	Comparing methods of combining effects

	Conclusions and related work
	References

