
From Equations to Distinctions:

Two Interpretations of Effectful Computations,

an extended list of examples

Niels Voorneveld*

Tallinn University of Technology
niels.voorneveld@taltech.ee

September 2020

This living document is an informal addendum to the MSFP 2020 paper
“From Equations to Distinctions: Two Interpretations of Effectful Computa-
tions” [2]. This paper concerns itself with behavioural descriptions of algebraic
effects. In particular, it shows how we can use axiomatic equations an inequa-
tions to construct an Eilenberg Moore algebra on the cofree monad over the
effect operations. This algebra is then suitable for specifying a congruent notion
of program equivalence for functional languages with effects, such as Plotkin’s
call-by-value PCF and Paul Levy’s call-by-push-value.

In this document, we will look for various examples of algebraic effects, which
algebra will be constructed from particular sets of axioms. We will use A to
denote the carrier of this algebra, denoting the set of truth values. These are
given by the quotient of continuation free trees, which have no leaves, but do
have two nodes of zero arity, denoting failure/falsehood/divergence and suc-
cess/truth/termination by ⊥ and > respectively. The algebra will be given by
α, where for each example we will show how it behaves locally over the effect op-
erations. Note that we include infinite trees, and the equational theory for those
is mainly based on admissibility (approximations). In particular, an infinite tree
without any leaves or success nodes is automatically equal to ⊥.

Unless stated otherwise, the carrier sets derived below are complete lattices
and the algebras are ω-continuous. As such, according to previous work [1],
they are suitable for constructing a congruent notion of program equivalence,
both in the form of a Quantitative logic and in the form of Applicative similar-
ity/bisimilarity via the definition of a relator.

This document only contains conclusions, not derivations. So it should only
be used as an overview of examples. Some interesting derived equations are
mentioned in some cases. Keep in my that this is not a complete list of examples,
just a selection. I may add more examples in due time. Please send me an e-mail

*This research was supported by the ESF funded Estonian IT Academy research measure
(project 2014-2020.4.05.19-0001).

1

mailto:niels.voorneveld@taltech.ee


if you are interested in whether your example of algebraic effect (combination)
fits in this framework, or if you want more info about an example (e.g. what
the induced relator looks like).

No operations

� Pure computation.

No equations.

A := {⊥ ≤ >}, algebra is the obvious one.

� Unity, for any set of operations.

Assume > ≤ ⊥, then A = 1.

Continuation-free operations, for any e ∈ E an operation exepte : 0.

� Discrete exceptions/errors

No equations.

A = E + {⊥,>} where ∀e ∈ E. ⊥ ≤ exepte ≤ >.

� Ordered exceptions/errors, assume E has an order.

For any e0, e1 ∈ E such that e0 ≤ e1, assume exepte0 ≤ exepte1 .

Unary operation examples, tick : 1.

� Bleep machine, or unit printer

No equations.

A := N + N where inl(n) ≤ inl(n+ 1) ≤ inr(m+ 1) ≤ inr(m).

α(tick(x)) = α(x) + 1, whatever side you are on.

� Cost

Axiom: tick(x) ≤ x
Derivable: ⊥ = tick(⊥).

A = {∞}+ N where ∞ ≤ inr(n+ 1) ≤ inr(n).

α(tick(x)) = α(x) + 1 where ∞+ 1 =∞.

� Lights on

Axiom: tick(tick(x)) = tick(x).

A = {⊥ ≤ tick(⊥) ≤ tick(>) ≤ >}.

� A non-example, an unsteady equation

Axiom: tick(tick(tick(x))) = tick(x).

Derivable: tick(⊥) = tick(tick(⊥)) and tick(>) = tick(tick(>)).

However, tick(x) = tick(tick(x)) is not derivable! But it should be if the
induced algebraic relation is to be base-valued...

2



Binary choice examples, or : 2.

� Binary input, or bitstream reader

No equations.

A = {f : 2∗ → {⊥ ≤ ◦ ≤ >} | ∀σ ∈ 2∗. f(σ) 6= ◦ ⇒ f(σ0) = f(σ) =
f(σ1)}
α(or(x, y))([]) = ◦, α(or(x, y))(0σ) = α(x)(σ), α(or(x, y))(1σ) = α(y)(σ).1

� Static state

Axioms: or(x, x) = x, or(or(x, y), z) = or(x, z) = or(x, or(y, z)).

A = {L,R} → B, α(or(x, y))(L) = α(x)(L), α(or(x, y))(R) = α(y)(R).

� Nondeterminism (neutral or convex)

Axioms: or(x, x) = x, or(x, y) = or(y, x), or(or(x, y), z) = or(x, or(y, z)).

Derivable: or(x, or(x, or(x, . . . ))) = or(x,⊥) (by admissibility).

A = {⊥ ≤ � ≤ >}, α(or(x, y)) = α(x) if α(x) = α(y), otherwise its �.

+ Angelic nondeterminism

We add the axiom x ≤ or(x, y). This unifies � and >.

+ Demonic nondeterminism

Instead, we add the axiom or(x, y) ≤ x. This unifies � and ⊥.

� Probability

Axioms: or(x, x) = x, or(x, y) = or(y, x), or(x, or(x, or(x, . . . ))) = x,
or(or(x, y), or(z, w)) = or(or(x, z), or(y, w)).

A = [0, 1], α(or(x, y)) = (α(x) + α(y))/2.

� Bit-toggle, the minimalist global store

Axioms: or(or(z, x), y) = or(or(w, x), y), or(x, or(y, z)) = or(x, or(y, w)),
or(or(x, y), or(y, z)) = y.

Derivable: or(or(x, or(y, z)), w) = or(y, w).

A = {0, 1} → B, α(or(x, y))(0) = α(x)(1), α(or(x, y))(1) = α(y)(1).

� List, or the broke-pay operation

Axiom: or(or(x, y), z) = or(x, z).

A = {⊥,>}∗6=[], where σ⊥ ≤ στ⊥, σ⊥τ ≤ σ>τ , στ> ≤ σ>.

α(or(x, y)) = head(α(x))α(y).

1For a set X, we denote X∗ for the set of finite lists over X.

3



More sophisticated versions of the above effects

� Traditional binary global store

Operations: lookup : 2, update0 : 1, update1 : 1.

Axioms: lookup(x, x) = x, lookup(update0(x), update1(y)) = lookup(x, y),
update0(lookup(x, y)) = update0(x), update1(lookup(x, y)) = update1(y).

Derivable: lookup(lookup(x, y), z) = lookup(x, z) = lookup(x, lookup(y, z)),
updatei(⊥) = ⊥, updatei(>) = >.

A = {0, 1} → B,

α(lookup(x0, x1))(i) = α(xi)(i), α(updatei(x))(j) = α(x)(i).

� Print

Operations: A set of printing messages M , ∀m ∈M. printm : 1.

No equations.

A = M∗ × {⊥,>}, (σ,⊥) ≤ (σm,⊥), (σ,⊥) ≤ (σ,>), (σm,>) ≤ (σ,>).

α(printm(x)) = (m first(α(x)), second(α(x))).

� Printing without linebreaks

Operations: A set of characters C, ∀σ ∈ C∗. printσ : 1.

Axioms: ∀σ ∈ C∗.∀c ∈ C. printσ(printc(x)) = printσc(x).

A = C∗×{⊥,>} with same order and similar algebra as previous example.

� Input/Output

Operations: A set of inputs I and outputs O, read : I, ∀o ∈ O.writeo : 1.

No equations, so A = T∅. There are ways to better represent this carrier
set, considering certain subsets of traces. Very similar to tactics in game
theory.

� Versus nondeterminism

Two operations: angor : 2, demor.

Axioms of angelic nondeterminism for angor, and demonic nondeterminism
for demor, plus angor(demor(x, y), z) = demor(angor(x, z), angor(y, z)), and
demor(angor(x, y), z) = angor(demor(x, z), demor(y, z)).

A = B, α(angor(x, y)) = α(x) ∨ α(y), α(demor(x, y)) = α(x) ∧ α(y).

� Jump, or exception catching

Operations: Set of exceptions E, ∀e ∈ E. catche : 2, exepte : 0.

Axioms: catche(exepte, x) = x, catche(exepte′ , x) = exepte′ if e 6= e′,
catche(x, x) = x, catche(x, exepte) = x, catche(⊥, x) = ⊥, catche(>, x) =
>.

A = E + {⊥,>} where ∀e ∈ E. ⊥ ≤ exepte ≤ >.

α(exepte) = e, α(catche(x, y)) = α(y) if α(x) = e, α(catche(x, y)) = α(x)
if α 6= x.

4



Combinations of effects

� Probability with cost

Operations: or : 2, tick : 1.

Axioms: Probability + Cost + tick(or(x, y)) = or(tick(x), tick(y)).

A = {f : N → [0, 1] | f increasing}, α(or(x, y))(n) = (α(x)(n) +
α(y)(n))/2, α(tick(x))(0) = 0, α(tick(x))(n+ 1) = α(x)(n).

� Probability with global store

Operations: or : 2, lookup : 2, update0 : 1, update1 : 1.

Axioms: Probability + Global store + distribution laws.

A = {0, 1} → [0, 1],

α(or(x, y))(i) = (α(x)(i) + α(y)(i))/2, α(lookup(x0, x1))(i) = α(xi)(i),
α(updatej(x))(i) = α(x)(j).

� Probability with nondeterminism

Operations: prob : 2, nond : 2.

Axioms: Probability for prob + nondeterminism for nond
+ prob(nond(x, y), z) = nond(prob(x, z), prob(y, z)).

A = {(p, q) ∈ [0, 1] | p ≥ q},
(p, q) = α(x) and (p′, q′) = α(y), then α(prob(x, y)) = ((p + p′)/2, (q +
q′)/2) and α(nond(x, y)) = (max(p, p′),min(q, q′)).

Note: The last example is not unit-valued. However, the other examples
do seem to be. As discussed in the paper, being unit-valued makes it so the
quantitative algebra can be decomposed into Boolean algebras while preserving
the induced algebraic relation.

References

[1] Niels Voorneveld. Quantitative logics for equivalence of effectful programs.
volume 347, pages 281 – 301, 2019. Proceedings of the Thirty-Fifth Confer-
ence on the Mathematical Foundations of Programming Semantics.

[2] Niels Voorneveld. From equations to distinctions: Two interpretations of
effectful computations. Electronic Proceedings in Theoretical Computer Sci-
ence, 317:1–17, May 2020.

5


